Key-Quiz 1 (Version 2)

Given $A(0,0,1), B(2,1,3), C(-1,-1,0), D(-2,-4,5)$

1. Compute the distance from D to the plane $A B C$. (Hint: You can get a normal vector of $A B C$ by computing $\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}$)
Soln. First of all, let's find a normal vector of the plane: $\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}$. We have $\overrightarrow{A B}=(2-0,1-0,3-1)=(2,1,2)$ and $\overrightarrow{A C}=(-1,-1,-1)$.
$\vec{n}=\hat{i}(1 *(-1)-2 *(-1))-\hat{j}(2 *(-1)-2 *(-1))+\hat{k}(2 *(-1)-1 *(-1))$, or $\vec{n}=(1,0,-1)$.
A point on the plane is $A(0,0,1) \cdot \overrightarrow{A D}=(-2,-4,4)$. The distance is

$$
d=\frac{|\vec{n} \cdot \overrightarrow{A D}|}{\|\vec{n}\|}=\frac{|-2-4|}{\sqrt{1^{2}+0+1^{2}}}=3 \sqrt{2}
$$

2. There is a parallelepiped with $A B, A C, A D$ to be some of its edges. Compute the volume of this parallelepiped.
Soln. The volume is

$$
V=|(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot \overrightarrow{A D}|=6
$$

Bonus: Suppose $|\vec{u}|=2,|\vec{v}|=1$. Suppose $|\vec{u}-\vec{v}|=3 / 2$. Compute the angle between \vec{u} and \vec{v}. (2 pts)

Soln. We see that $9 / 4=|\vec{u}-\vec{v}|^{2}=(\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v})=\|\vec{u}\|^{2}-2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2}$
We thus solve $\vec{u} \cdot \vec{v}=\frac{1}{2}(4+1-9 / 4)=11 / 8$.
Hence $\cos \theta=(11 / 8) /(|\vec{u}||\vec{v}|)=11 / 16$.
The angle is $\theta=\arccos (11 / 16)$

