Key-Quiz 1 (Version 2)

Given A(0,0,1), B(2,1,3), C(-1,-1,0), D(-2,-4,5)

1. Compute the distance from D to the plane \overrightarrow{ABC} . (Hint: You can get a normal vector of \overrightarrow{ABC} by computing $\overrightarrow{n} = \overrightarrow{AB} \times \overrightarrow{AC}$)

Soln. First of all, let's find a normal vector of the plane: $\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC}$. We have $\overrightarrow{AB} = (2 - 0, 1 - 0, 3 - 1) = (2, 1, 2)$ and $\overrightarrow{AC} = (-1, -1, -1)$.

$$\vec{n} = \hat{i}(1*(-1) - 2*(-1)) - \hat{j}(2*(-1) - 2*(-1)) + \hat{k}(2*(-1) - 1*(-1)),$$
 or $\vec{n} = (1, 0, -1).$

A point on the plane is A(0,0,1). $\overrightarrow{AD} = (-2,-4,4)$. The distance is

$$d = \frac{|\vec{n} \cdot \overrightarrow{AD}|}{\|\vec{n}\|} = \frac{|-2-4|}{\sqrt{1^2 + 0 + 1^2}} = 3\sqrt{2}$$

2. There is a parallelepiped with AB, AC, AD to be some of its edges. Compute the volume of this parallelepiped.

Soln. The volume is

$$V = |(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD}| = 6$$

Bonus: Suppose $|\vec{u}|=2, |\vec{v}|=1$. Suppose $|\vec{u}-\vec{v}|=3/2$. Compute the angle between \vec{u} and \vec{v} . (2 pts)

Soln. We see that $9/4 = |\vec{u} - \vec{v}|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = ||\vec{u}||^2 - 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$ We thus solve $\vec{u} \cdot \vec{v} = \frac{1}{2}(4 + 1 - 9/4) = 11/8$.

Hence $\cos \theta = (11/8)/(|\vec{u}||\vec{v}|) = 11/16$.

The angle is $\theta = \arccos(11/16)$