Keys-Quiz 12

1. Let $\mathcal S$ be the surface xy-z=2 for $1\leq x\leq 2, 1\leq y\leq 2$. Set up the integral $\iint_{\mathcal S} \vec v \cdot \vec N dA$ for $\vec v=(x^2,zy,1)$ without solving.

First of all, the surface is the graph of z = xy - 2. We parametrize the surface as $\vec{x}(u,v) = (u,v,uv-2)$ for $1 \le u,v \le 2$

We have

$$\vec{N}dA = \vec{x}_u \times \vec{x}_v dudv = (-v, -u, 1) dudv$$

and $\vec{v} = (u^2, (uv - 2)v, 1)$. The integral is thus

$$\int_{1}^{2} \int_{1}^{2} (-u^{2}v - uv(uv - 2) + 1) du dv$$

2. $\vec{v} = (x, yz, xy)$. Let \mathcal{S} be the sphere $x^2 + y^2 + z^2 = 4$. Write out the formula for the outer flux of \vec{v} on \mathcal{S} and change it into a volume integral in spherical coordinates.

The formula is $\iint_{\mathcal{S}} \vec{v} \cdot \vec{N} dA$. Applying Divergence Theorem, we have

$$\iiint_R \nabla \cdot \vec{v} dV = \iiint_R (1+z+0)dV$$

In spherical, we have $z = \rho \cos \phi$, $dV = \rho^2 \sin \phi d\rho d\phi d\theta$. The ranges: $0 \le \rho \le 2, 0 \le \phi \le \pi, 0 \le \theta < 2\pi$. Hence, the integral is

$$\int_0^{2\pi} \int_0^{\pi} \int_0^2 (1 + \rho \cos \phi) \rho^2 \sin \phi d\rho d\phi d\theta$$