Keys-Quiz 12

1. Let \mathcal{S} be the surface $x y-z=2$ for $1 \leq x \leq 2,1 \leq y \leq 2$. Set up the integral $\iint_{\mathcal{S}} \vec{v} \cdot \vec{N} d A$ for $\vec{v}=\left(x^{2}, z y, 1\right)$ without solving.
First of all, the surface is the graph of $z=x y-2$. We parametrize the surface as $\vec{x}(u, v)=(u, v, u v-2)$ for $1 \leq u, v \leq 2$
We have

$$
\vec{N} d A=\vec{x}_{u} \times \vec{x}_{v} d u d v=(-v,-u, 1) d u d v
$$

and $\vec{v}=\left(u^{2},(u v-2) v, 1\right)$. The integral is thus

$$
\int_{1}^{2} \int_{1}^{2}\left(-u^{2} v-u v(u v-2)+1\right) d u d v
$$

2. $\vec{v}=(x, y z, x y)$. Let \mathcal{S} be the sphere $x^{2}+y^{2}+z^{2}=4$. Write out the formula for the outer flux of \vec{v} on \mathcal{S} and change it into a volume integral in spherical coordinates.
The formula is $\iint_{\mathcal{S}} \vec{v} \cdot \vec{N} d A$. Applying Divergence Theorem, we have

$$
\iiint_{R} \nabla \cdot \vec{v} d V=\iiint_{R}(1+z+0) d V
$$

In spherical, we have $z=\rho \cos \phi, d V=\rho^{2} \sin \phi d \rho d \phi d \theta$. The ranges: $0 \leq$ $\rho \leq 2,0 \leq \phi \leq \pi, 0 \leq \theta<2 \pi$. Hence, the integral is

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{2}(1+\rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

