## 234 Quiz 10

Section:
Name:
20 minutes. You can get 10 points at most.

1. Consider the parabola $y=x^{2}$. Let $\mathcal{C}$ be the part from $y=1$ to $y=4$ in the first quadrant.
(a). (5) Compute $\int_{\mathcal{C}} x d s$.

Parametrize the curve as $\vec{x}(t)=\left(t, t^{2}\right), 1 \leq t \leq 2$ because when $y=4$, $t^{2}=4, t=2$.
Then, we see that $d \vec{x}=(1,2 t) d t$ and $d s=\left|\vec{x}^{\prime}(t)\right| d t=\sqrt{1+4 t^{2}} d t$
Using $u=4 t^{2}+1$,

$$
\int_{1}^{2} t \sqrt{1+4 t^{2}} d t=\int_{5}^{17} \frac{1}{8} \sqrt{u} d u=\left.\frac{1}{12} u^{3 / 2}\right|_{5} ^{17}
$$

(b). (1) Is $\int_{\mathcal{C}} x y d x=\left.\frac{1}{2} x^{2} y\right|_{(1,1)} ^{(2,4)}=\frac{1}{2} 4 * 4-\frac{1}{2} 1 * 1$ correct or wrong?

It's wrong. $y$ is not a constant along the curve.
2. (5) Consider the gravitational potential energy of a satellite near the Earth $\phi=-D / r$ where $r$ is the distance from the center of the Earth. (By physics, $D=G M m$ is a constant but you don't need this expression here.) The gravitational force is $\vec{F}=-\nabla \phi$. Let $\mathcal{C}$ be the line segment from $(1,1,1)$ to $(2,2,2)$. Compute $\int_{\mathcal{C}} \vec{F} \cdot d \vec{x}$ and verify it's $\phi(1,1,1)-\phi(2,2,2)$. We first parametrize the curve and compute $d \vec{x}$, which has 2 pts. The line segment can be computed as $\vec{x}(t)=(1,1,1)+(2-1,2-1,2-1) t=$ $(1+t, 1+t, 1+t), 0 \leq t \leq 1$. Then, $d \vec{x}=(1,1,1) d t$.
Now, let's compute the gradient, which has 2 pts . You should know $r=$ $\sqrt{x^{2}+y^{2}+z^{2}}$ and the chain rule. $\nabla \phi=D(x, y, z) / r^{3}$ because

$$
\phi_{x}=\phi_{r} r_{x}=\frac{D}{r^{2}} r_{x}=\frac{D}{r^{2}} \frac{x}{r}=\frac{D x}{r^{3}}
$$

Let's check: $r_{x}=\left[\sqrt{x^{2}+y^{2}+z^{2}}\right]_{x}=\frac{1}{2} \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} 2 x=\frac{x}{r}$
With the parametrization, $r=\sqrt{(1+t)^{2}+(1+t)^{2}+(1+t)^{2}}=\sqrt{3}(t+$ 1). Hence the integral is
$-\int_{0}^{1} \frac{D}{3 \sqrt{3}(1+t)^{3}}\left(\begin{array}{l}1+t \\ 1+t \\ 1+t\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) d t=-\int_{0}^{1} \frac{D d t}{\sqrt{3}(1+t)^{2}}=\left.\frac{D}{\sqrt{3}(1+t)}\right|_{0} ^{1}=\phi(1,1,1)-\phi(2,2,2)$

