## 234 Quiz 1-Keys

1. As shown, a ball $(A)$ is attached at the end of one string. The length of the string is 3 m . A force with size $2 N$ is acting on the ball. $\theta=\pi / 3$. Assuming $O$ is picked as the reference point, we see that the position vector of $A$ is $\vec{r}=\overrightarrow{O A}$. The torque acting on the ball is defined to be $\vec{T}=\vec{r} \times \vec{F}$. Draw the torque(roughly show the direction) in the figure and indicate the size of the torque(the magnitude of the torque vector).


Ans: By right hand rule, the torque, which is the cross product $\vec{r} \times \vec{F}$, is perpendicular with the plane and points up. (I won't draw it here since it's not convenient.) The size is $\|\vec{T}\|=\|\vec{r}\|\|\vec{F}\| \sin (\pi / 3)=3 \sqrt{3}(N \cdot m)$
2. Given three vectors

$$
\vec{a}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right), \vec{b}=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right), \vec{c}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)
$$

compute the determinant $\operatorname{det}(\vec{a}, \vec{b}, \vec{c})=\vec{a} \cdot(\vec{b} \times \vec{c})$.
Ans:

$$
\left|\begin{array}{ccc}
2 & 1 & 0 \\
2 & -1 & 1 \\
1 & 0 & 2
\end{array}\right|=2\left|\begin{array}{cc}
-1 & 1 \\
0 & 2
\end{array}\right|-1\left|\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right|+0 *|\ldots|=-4-3=-7
$$

Bonus: Suppose $|\vec{u}|=2,|\vec{v}|=1$. The angle $\theta$ between $\vec{u}, \vec{v}$ satisfies $\cos \theta=$ $1 / 6$. Find the length of $2 \vec{u}+3 \vec{v}$ :

Ans:

$$
\begin{aligned}
|2 \vec{u}+3 \vec{v}|=\sqrt{(2 \vec{u}+3 \vec{v}) \cdot(2 \vec{u}+3 \vec{v})}= & \sqrt{4|\vec{u}|^{2}+12 \vec{u} \cdot \vec{v}+9|\vec{v}|^{2}} \\
& =\sqrt{4 * 2^{2}+12 *|\vec{u}||\vec{v}| * \frac{1}{6}+9}=\sqrt{29}
\end{aligned}
$$

