- 1. Let C be $y = \sin x$ from (0,0) to $(\frac{\pi}{2}, y_1)$.
 - (a). Set up the integral without solving: $\int_{\mathcal{C}} xydy$

$$\vec{x}(t) = (t, \sin t), 0 \le t \le \pi/2.$$

$$\int_{0}^{\pi/2} t \sin t \cos t dt$$

(b). Let $\vec{F} = (y, x)$. Compute $\int_{\mathcal{C}} \vec{F} \cdot d\vec{x}$

$$\int_0^{\pi/2} (\sin t + t \cos t) dt = \pi/2$$

- 2. Let C_1 be the dogleg path from (0,0) to (1,1) through (0,1), and C_2 be the dogleg path from (0,0) to (1,1) through (1,0).
 - (a). Is $\vec{F}=(2xy,x^2)$ a conservative field? Evaluate $\int_{\mathcal{C}_1} \vec{F} \cdot d\vec{x}$. Is this equal to $\int_{\mathcal{C}_2} \vec{F} \cdot d\vec{x}$? (If it's conservative, use the fundamental theorem.)

$$P_y = Q_x$$
 yes. Then, $f = x^2y + C$. The values of both are 1.

- (b). Let $\vec{F} = (x^2y, 0)$. Answer the same questions.
- $P_y \neq Q_x$. No. The first integral is $\int_0^1 x^2 dx = 1/3$. The second is 0.
- 3. (a). Let \mathcal{C} be the line segment from (1,1,1) to (2,2,2). Parametrize it and compute $d\vec{x}$ using your parametrization.

$$\vec{x}(t) = (1+t, 1+t, 1+t), 0 \le t \le 1. \ d\vec{x} = (1, 1, 1)dt$$

(b). Consider $\phi(x,y,z)=-D/r$ where D is a constant and $r=\sqrt{x^2+y^2+z^2}$ is the distance from the origin. Compute $\vec{F}=-\nabla\phi$ using the chain rule $\phi_x=\phi_r r_x$ etc and the fact $r_x=x/\sqrt{x^2+y^2+z^2}=x/r$

$$-\nabla \phi = -D(x, y, z)/r^3$$

(c). Is \vec{F} a conservative field in the first octant? Use the parametrization in (a) and the fundamental theorem to compute $\int_{\mathcal{C}} \vec{F} \cdot d\vec{x}$. Verify that the two methods agree.

Yes. It's conservative since it's the gradient of something. For the integral, using fundamental theorem, it's just $-(\phi(2,2,2)-\phi(1,1,1))$. For the line integral using parametrization, check the quiz.

4. Exercises about flux integrals? Wait until I come back...