1. Let \mathcal{C} be $y=\sin x$ from $(0,0)$ to $\left(\frac{\pi}{2}, y_{1}\right)$.
(a). Set up the integral without solving: $\int_{\mathcal{C}} x y d y$
$\vec{x}(t)=(t, \sin t), 0 \leq t \leq \pi / 2$.

$$
\int_{0}^{\pi / 2} t \sin t \cos t d t
$$

(b). Let $\vec{F}=(y, x)$. Compute $\int_{\mathcal{C}} \vec{F} \cdot d \vec{x}$

$$
\int_{0}^{\pi / 2}(\sin t+t \cos t) d t=\pi / 2
$$

2. Let \mathcal{C}_{1} be the dogleg path from $(0,0)$ to $(1,1)$ through $(0,1)$, and \mathcal{C}_{2} be the dogleg path from $(0,0)$ to $(1,1)$ through $(1,0)$.
(a). Is $\vec{F}=\left(2 x y, x^{2}\right)$ a conservative field? Evaluate $\int_{\mathcal{C}_{1}} \vec{F} \cdot d \vec{x}$. Is this equal to $\int_{\mathcal{C}_{2}} \vec{F} \cdot d \vec{x}$? (If it's conservative, use the fundamental theorem.) $P_{y}=Q_{x}$ yes. Then, $f=x^{2} y+C$. The values of both are 1.
(b). Let $\vec{F}=\left(x^{2} y, 0\right)$. Answer the same questions.
$P_{y} \neq Q_{x}$. No. The first integral is $\int_{0}^{1} x^{2} d x=1 / 3$. The second is 0.
3. (a). Let \mathcal{C} be the line segment from $(1,1,1)$ to $(2,2,2)$. Parametrize it and compute $d \vec{x}$ using your parametrization.
$\vec{x}(t)=(1+t, 1+t, 1+t), 0 \leq t \leq 1 . d \vec{x}=(1,1,1) d t$
(b). Consider $\phi(x, y, z)=-D / r$ where D is a constant and $r=\sqrt{x^{2}+y^{2}+z^{2}}$ is the distance from the origin. Compute $\vec{F}=-\nabla \phi$ using the chain rule $\phi_{x}=\phi_{r} r_{x}$ etc and the fact $r_{x}=x / \sqrt{x^{2}+y^{2}+z^{2}}=x / r$
$-\nabla \phi=-D(x, y, z) / r^{3}$
(c). Is \vec{F} a conservative field in the first octant? Use the parametrization in (a) and the fundamental theorem to compute $\int_{\mathcal{C}} \vec{F} \cdot d \vec{x}$. Verify that the two methods agree.
Yes. It's conservative since it's the gradient of something. For the integral, using fundamental theorem, it's just $-(\phi(2,2,2)-\phi(1,1,1))$. For the line integral using parametrization, check the quiz.
4. Exercises about flux integrals? Wait until I come back...
