1 Basic concepts

1. Understand the fundamental theorem: $\nabla f \cdot d \vec{x}=d f$. Then $\int_{C} \nabla f \cdot d \vec{x}=$ $\int_{C} d f$ is just the total change of f values.
2. Conservative field: $\vec{F}=(P, Q): \oint \vec{F} \cdot d \vec{x}=0$ for any closed curve \mathcal{C}. If it's conservative, then it's the gradient of something. Clairaut's theorem says that $P_{y}=Q_{x}$. Use this to check if it's conservative or not. Consequences: (1). Evaluating $\int_{\mathcal{C}} \vec{F} \cdot d \vec{x}$, where \mathcal{C} is not closed, is easy if you use the fundamental theorem. (2). The value of line integral only depends on the endpoints, not depending on how you arrive there.
Comment: In 3D case, we use $\nabla \times \vec{F}=\overrightarrow{0}$ to check if it's conservative or not.
3. The outer normal (Draw the picture of a curve and the outer normal.) The flux integral(line integral version) $\int_{\mathcal{C}} \vec{v} \cdot \vec{N} d s$ describes the amount of material flowing across the curve in unit time.
In the $2 D$ case, we know $d \vec{x}=(d x, d y)=\vec{T} d s$. Then, $\vec{N} d s=\vec{T} \times \hat{z} d s=$ $d \vec{x} \times \hat{z}=(d x, d y) \times \hat{z}=(d y,-d x)=\left(y^{\prime}(t),-x^{\prime}(t)\right) d t$. (For 3D, flux integral is defined using surface integral.)

2 Exercises

1. Let \mathcal{C} be $y=\sin x$ from $(0,0)$ to $\left(\frac{\pi}{2}, y_{1}\right)$.
(a). Set up the integral without solving: $\int_{\mathcal{C}} x y d y$
(b). Let $\vec{F}=(y, x)$. Compute $\int_{\mathcal{C}} \vec{F} \cdot d \vec{x}$
2. Let \mathcal{C}_{1} be the dogleg path from $(0,0)$ to $(1,1)$ through $(0,1)$, and \mathcal{C}_{2} be the dogleg path from $(0,0)$ to $(1,1)$ through $(1,0)$.
(a). Is $\vec{F}=\left(2 x y, x^{2}\right)$ a conservative field? Evaluate $\int_{\mathcal{C}_{1}} \vec{F} \cdot d \vec{x}$. Is this equal to $\int_{\mathcal{C}_{2}} \vec{F} \cdot d \vec{x}$? (If it's conservative, use the fundamental theorem.)
(b). Let $\vec{F}=\left(x^{2} y, 0\right)$. Answer the same questions.
3. (a). Let \mathcal{C} be the line segment from $(1,1,1)$ to $(2,2,2)$. Parametrize it and compute $d \vec{x}$ using your parametrization.
(b). Consider $\phi(x, y, z)=-D / r$ where D is a constant and $r=\sqrt{x^{2}+y^{2}+z^{2}}$ is the distance from the origin. Compute $\vec{F}=-\nabla \phi$ using the chain rule $\phi_{x}=\phi_{r} r_{x}$ etc and the fact $r_{x}=x / \sqrt{x^{2}+y^{2}+z^{2}}=x / r$
(c). Is \vec{F} a conservative field in the first octant? Use the parametrization in (a) and the fundamental theorem to compute $\int_{\mathcal{C}} \vec{F} \cdot d \vec{x}$. Verify that the two methods agree.
4. Exercises about flux integrals? Wait until I come back...
