1 Basic concepts

- 1. Understand the fundamental theorem: $\nabla f \cdot d\vec{x} = df$. Then $\int_C \nabla f \cdot d\vec{x} = \int_C df$ is just the total change of f values.
- 2. Conservative field: $\vec{F} = (P,Q)$: $\oint \vec{F} \cdot d\vec{x} = 0$ for any closed curve \mathcal{C} . If it's conservative, then it's the gradient of something. Clairaut's theorem says that $P_y = Q_x$. Use this to check if it's conservative or not. Consequences: (1). Evaluating $\int_{\mathcal{C}} \vec{F} \cdot d\vec{x}$, where \mathcal{C} is not closed, is easy if you use the fundamental theorem. (2). The value of line integral only depends on the endpoints, not depending on how you arrive there.

Comment: In 3D case, we use $\nabla \times \vec{F} = \vec{0}$ to check if it's conservative or not.

3. The outer normal (Draw the picture of a curve and the outer normal.) The flux integral (line integral version) $\int_{\mathcal{C}} \vec{v} \cdot \vec{N} ds$ describes the amount of material flowing across the curve in unit time.

In the 2D case, we know $d\vec{x}=(dx,dy)=\vec{T}ds$. Then, $\vec{N}ds=\vec{T}\times\hat{z}ds=d\vec{x}\times\hat{z}=(dx,dy)\times\hat{z}=(dy,-dx)=(y'(t),-x'(t))dt$. (For 3D, flux integral is defined using surface integral.)

2 Exercises

- 1. Let C be $y = \sin x$ from (0,0) to $(\frac{\pi}{2}, y_1)$.
 - (a). Set up the integral without solving: $\int_{\mathcal{C}} xydy$
 - (b). Let $\vec{F} = (y, x)$. Compute $\int_{\mathcal{C}} \vec{F} \cdot d\vec{x}$
- 2. Let C_1 be the dogleg path from (0,0) to (1,1) through (0,1), and C_2 be the dogleg path from (0,0) to (1,1) through (1,0).
 - (a). Is $\vec{F} = (2xy, x^2)$ a conservative field? Evaluate $\int_{\mathcal{C}_1} \vec{F} \cdot d\vec{x}$. Is this equal to $\int_{\mathcal{C}_2} \vec{F} \cdot d\vec{x}$? (If it's conservative, use the fundamental theorem.)
 - (b). Let $\vec{F} = (x^2y, 0)$. Answer the same questions.
- 3. (a). Let \mathcal{C} be the line segment from (1,1,1) to (2,2,2). Parametrize it and compute $d\vec{x}$ using your parametrization.
 - (b). Consider $\phi(x,y,z)=-D/r$ where D is a constant and $r=\sqrt{x^2+y^2+z^2}$ is the distance from the origin. Compute $\vec{F}=-\nabla\phi$ using the chain rule $\phi_x=\phi_r r_x$ etc and the fact $r_x=x/\sqrt{x^2+y^2+z^2}=x/r$
 - (c). Is \vec{F} a conservative field in the first octant? Use the parametrization in (a) and the fundamental theorem to compute $\int_{\mathcal{C}} \vec{F} \cdot d\vec{x}$. Verify that the two methods agree.
- 4. Exercises about flux integrals? Wait until I come back...