
Working sheet 1

1. As shown in the figure, suppose the domain of f(x, y) is the one bounded
by the curve(including the boundary). Assume we know that f has local
maxima at A,B,C,D.

(a). Could any of the arrows represent ∇f? (Hint: Understand that ∇f
is the fastest increasing direction.) Draw all possible ∇f for all of them.
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Remark: For more information, read materials from online about KKT
conditions.

(b). The condition g(x, y) = C is usually a curve. Now, suppose the
boundary in the picture is g = C and the domain of f is g = C. Answer
the same questions for A,C,D.

2. (a). Consider f(x, y, z) = 3x2 + 4y2 + z2 and g(x, y, z) = 2x+ 3y + z = 1
is the constraint. Find the candidates for extrema of f on the constraint.
Is this a minimum point, a maximum point or neither? (Hint: You have a
unique candidate. If a max exists, this must be the max; If a min exists,
this must be the min. Then, you should argue the existence of them.)

(b). Consider f(x, y, z) = 2x+ 3y+ z and g(x, y, z) = 3x2 + 4y2 + z2 = 1.
Find all candidates for extrema of f on the constraint g = 1. Is there a
global max? If yes, which one is? Is there a global min? If yes, which one
is?

Soln. (a) We first of all find the candidates. Obviously, ∇g 6= 0. Use
Lagrange multiplier, we have

(6x, 8y, 2z) = ∇f = λ∇g = λ(2, 3, 1)

This means x = λ/3, y = 3λ/8, z = λ/2. Plugging them into 2x+3y+z =
1. You get λ = 24/55. The point is (8/55, 9/55, 12/55). The problem is
how to determine if it’s a max or a min.

You can’t use 2nd derivative test. The point you find is with constraint
g = C and ∇f 6= 0 in general. The 2nd derivative test usually fails.
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Instead, you must look at the function itself. The constraint tells you
x, y, z can go to infinity. No matter which direction you go to infinity,
you’ll always make f go to infinity. Hence, f can’t have maximum. Is this
point a minimum? Actually, the minimum must exist because as you go
far away enough, your f is large enough. There must be a lowest point in
the middle. There’s only one candidate. The point must be a minimum
point.

(b). Similarly, ∇g 6= ~0 on g = 1. Using Lagrange multiplier:

(2, 3, 1) = λ(6x, 8y, 2z)

We have x = 1/(3λ), y = 3/(8λ), z = 1/(2λ). Plug this into the constraint:
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You therefore get two points:
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Which one is maximum and which one is minimum? Or even, does the
max/min exist?

Notice that 3x2+4y2+z2 = 1. Then, your x, y, z are bounded. They can’t
go too far. Actually, this is the surface of an ellipsoid. Then, your domain
is bounded and closed. There must be a maximum and a minimum. Then,
which one is the maximum and which one is the minimum?–The answer
is that we plug in values!
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. Since the maximum and the minimum exist, they must be from these
two points. Then, you know the first one must be the global max and the
latter one must be the global min.

3. As you see in applications, the Lagrange multiplier method is usually
performed like this: define the Lagrangian L(x, y, z, λ) = f(x, y, z) +
λ(g(x, y, z) − C). Then the optimization of f with constraint g = C is
equivalent to finding the unconstrained critical points of L on the 4D
space. Convince yourself that this is true. (You see the tricky part
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here: one way to get rid of the constraint is to solve the implicit func-
tion z = h(x, y) and plug in, then you have an optimization problem in
2D space f(x, y, h(x, y)); here, we are increasing the dimension! We can
solve the unconstraint problem again!)
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