Working sheet 1

1. As shown in the figure, suppose the domain of $f(x, y)$ is the one bounded by the curve(including the boundary). Assume we know that f has local maxima at A, B, C, D.
(a). Could any of the arrows represent ∇f ? (Hint: Understand that ∇f is the fastest increasing direction.) Draw all possible ∇f for all of them.

Remark: For more information, read materials from online about KKT conditions.
(b). The condition $g(x, y)=C$ is usually a curve. Now, suppose the boundary in the picture is $g=C$ and the domain of f is $g=C$. Answer the same questions for A, C, D.
2. (a). Consider $f(x, y, z)=3 x^{2}+4 y^{2}+z^{2}$ and $g(x, y, z)=2 x+3 y+z=1$ is the constraint. Find a candidate for extrema of f on the constraint. Is this a minimum point, a maximum point or neither? (Hint: You have a unique candidate. If a max exists, this must be the max; If a min exists, this must be the min. Then, you should argue the existence of them.)
(b). Consider $f(x, y, z)=2 x+3 y+z$ and $g(x, y, z)=3 x^{2}+4 y^{2}+z^{2}=1$. Find all candidates for extrema of f on the constraint $g=1$. Is there a global max? If yes, which one is? Is there a global min? If yes, which one is?
3. As you see in applications, the Lagrange multiplier method is usually performed like this: define the Lagrangian $L(x, y, z, \lambda)=f(x, y, z)+$ $\lambda(g(x, y, z)-C)$. Then the optimization of f with constraint $g=C$ is equivalent to finding the unconstrained critical points of L on the $4 D$ space. Convince yourself that this is true. (You see the tricky part here: one way to get rid of the constraint is to solve the implicit function $z=h(x, y)$ and plug in, then you have an optimization problem in $2 D$ space $f(x, y, h(x, y))$; here, we are increasing the dimension! We can solve the unconstraint problem again!)

