Summary for part 3

The definitions of double and triple integrals: limits of the corresponding Riemann sums. Fubini says they are equal to iterated integrals

1 Double integrals

$\iint_{D} f(x, y) d A$. Several things:

- You should be able to change the order of integration
- Area element in polar coordinates $(r, \theta): x=r \cos \theta, y=r \sin \theta$ is $d A=r d r d \theta$ while in Cartesian $d A=d x d y$
- The volume of a region

$$
V=\iiint_{R} d x d y d z=\iint_{D} h e i g h t d A
$$

2 Volume Integrals

$\iiint_{R} f d V$. Several things:

- Change order of integration if necessary
- Cartesian $d V=d x d y d z$
- Cylindrical $(r, \theta, z): x=r \cos \theta, y=r \sin \theta, z=z$. The volume element is $d V=r d r d \theta d z$
- Spherical $(\rho, \phi, \theta): x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$. The volume element is $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$
- Total mass $\iiint_{V} \mu d V$; Center of mass; etc

Vector field-It's just a vector-valued function in R^{2} or R^{3}. (You associate a vector for each point)

3 Line integrals

Have covered three types of line integrals(there are other types)
A. Line integral of a scalar function $\int_{C} f(x, y) d s$
B. Line integral of a vector field $\int_{C} \vec{F} \cdot d \vec{x}$
C. Flux integral $\int_{C} \vec{v} \cdot \vec{N} d s \vec{N}$ is the outer unit normal vector.

For 2 dimensions:

$$
\begin{gathered}
d \vec{x}=\vec{T} d s=\binom{d x}{d y} \\
\vec{N} d s=\binom{d y}{-d x} \\
d s=|d \vec{x}|=\sqrt{d x^{2}+d y^{2}}
\end{gathered}
$$

The second relation is true only if the angle is 90 clockwisely from \vec{T} to \vec{N}, which is usually the case when we compute flux.

For 3 dimensions, $\vec{x}=(x, y, z)$, you'll have $d \vec{x}=(d x, d y, d z) . \vec{F}=$ (P, Q, R), you'll have $\vec{F} \cdot d \vec{x}=P d x+Q d y+R d z$. The second integral then becomes $\int_{C}(P d x+Q d y+R d z)$.

3.1 How to compute them generally?

Use parametrization

If C is given by $\vec{x}=\vec{x}(t)$, then

$$
\begin{gathered}
d \vec{x}=\vec{x}^{\prime}(t) d t=\binom{x^{\prime}(t)}{y^{\prime}(t)} d t \\
d s=|d \vec{x}|=\left|\vec{x}^{\prime}(t)\right| d t=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
\vec{N} d s=\binom{y^{\prime}(t)}{-x^{\prime}(t)} d t
\end{gathered}
$$

Then, $\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t))\left|\vec{x}^{\prime}(t)\right| d t$ and the second one is $\int_{a}^{b} \vec{F} \cdot \vec{x}^{\prime}(t) d t$

Use the meaning the integrals $\int d s=$ Length, $\iint d A=$ Area etc
Application: The average of f on C is $\int_{C} f d s / \int_{C} d s=\int_{C} f d s / \operatorname{Length}(C)$

3.2 Fundamental theorem (line integral version)

$$
\int_{C} \nabla f \cdot d \vec{x}=\int_{C} f_{x} d x+f_{y} d y+f_{z} d z=\int_{C} d f=f(B)-f(A)
$$

This tells us that

$$
\oint_{C} \nabla f \cdot d \vec{x}=0
$$

when f is a single-valued smooth function(for example $f=\theta=\arctan (y / x)$ is not OK for curve around origin, as θ is not single-valued smooth function).

Here the circle means the integral is on a closed curve.

3.3 Conservative vector field

If the circulation satisfies

$$
\oint_{C} \vec{F} \cdot d \vec{x}=0
$$

for any closed curve C, \vec{F} is called a conservative field and $\vec{F}=\nabla f$ for some scalar function f (called potential).

If \vec{F} is not conservative, then you must use Green's theorem(2d) or Stokes Theorem(3d version) to find the circulation.

Criteria for conservative fields:

- (Clairaut) For $\vec{F}=\binom{P}{Q}, Q_{x}-P_{y}=0$ is required
- For 3D vector $\vec{F}, \nabla \times \vec{F}=0$ is needed
- Sometimes, you can find f so that $\vec{F}=\nabla f$

Comments:

$$
\operatorname{curl}(\vec{v})=\nabla \times \vec{v}=\left|\begin{array}{ccc}
\vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
P & Q & R
\end{array}\right|=\left(R_{y}-Q_{z}\right) \vec{e}_{x}+\left(P_{z}-R_{x}\right) \vec{e}_{y}+\left(Q_{x}-P_{y}\right) \vec{e}_{z}
$$

Therfore, the second condition is also $R_{y}=Q_{z}, P_{z}=R_{x}, Q_{x}=P_{y}$

3.4 Green's Theorem

This is the theorem that transforms the line integrals on closed curve to a double integral over the region inside.

We consider $\vec{v}=\binom{P}{Q}$

- (Curl form) This is about counterclock circulation:

$$
\oint_{C} \vec{v} \cdot d \vec{x}=\oint_{C} P d x+Q d y=\iint_{R}\left(Q_{x}-P_{y}\right) d A=\iint_{R} \operatorname{curl}(\vec{v})_{z} d A
$$

Notice that

$$
\operatorname{curl}(\vec{v})=\nabla \times \vec{v}=\left|\begin{array}{ccc}
\vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
P & Q & 0
\end{array}\right|=\left(Q_{x}-P_{y}\right) \vec{e}_{z}
$$

- (Divergence form) This is about outer flux:

$$
\oint_{C} \vec{v} \cdot \vec{N} d s=\iint_{R}\left(P_{x}+Q_{y}\right) d A=\iint_{R} \operatorname{div}(\vec{v}) d A
$$

Here $\operatorname{div}(\vec{v})=\nabla \cdot \vec{v}$, the dot product between the operator ∇ and \vec{v}.
Notice the left hand side is $\oint_{C} \vec{v} \cdot\binom{d y}{-d x}=\oint_{C} P d y-Q d x$, from where you can see the two versions are equivalent.
$\nabla \cdot \vec{v}$ is the source or sink of the vector field which balances the flux. $\nabla \cdot \vec{v}>0$, field is expanding while $\nabla \cdot \vec{v}<0$ indicates compressing field.

4 Surface Integrals

There are two types:

$$
\begin{gathered}
\iint_{S} f d A \\
\text { flux }: \iint_{S} \vec{v} \cdot \vec{N} d A
\end{gathered}
$$

$d A$ is called the area element. \vec{N} is the unit outer normal. $\vec{N} d A=d \vec{S}$ is the directed area element.

4.1 How to compute?

To use parametrization(the surface patch)

$$
\vec{x}=\vec{x}(u, v)=\left(\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right)
$$

Then, we have:

$$
\begin{gathered}
\vec{N} d A=\vec{x}_{u} \times \vec{x}_{v} d u d v \\
\vec{N}=\frac{\vec{x}_{u} \times \vec{x}_{v}}{\left\|\vec{x}_{u} \times \vec{x}_{v}\right\|} \\
d A=\left\|\vec{x}_{u} \times \vec{x}_{v}\right\| d u d v
\end{gathered}
$$

Plugging these back, you get a double integral.
Example: Area element of polar coordinates in $x y$ plane. The position vector can be parametrized as

$$
\vec{x}(r, \theta)=r \cos \theta \hat{x}+r \sin \theta \hat{y}=\left(\begin{array}{c}
r \cos \theta \\
r \sin \theta \\
0
\end{array}\right)
$$

Then, $d A=\left\|\vec{x}_{r} \times \vec{x}_{\theta}\right\| d r d \theta=r d r d \theta$. This is the same as we argued in last Chapter.

Generally, $d A$ is not $r d r d \theta$ in cylindrical coordinates for curved surface. Above is true only for straight planes. For those surfaces, you must use $\left\|\vec{x}_{r} \times \vec{x}_{\theta}\right\| d r d \theta$ to get $d A$

Example: Flux of curl of \vec{F} : This is the key component in Stokes theorem. Basically, you want to compute

$$
\iint_{S}(\nabla \times \vec{F}) \cdot \vec{N} d A
$$

Let $\omega=(1,2,3)$ and $\vec{F}=\omega \times \vec{x}=(2 z-3 y, 3 x-z, y-2 x)$. Let S be the upper hemisphere with radius 2 . Compute the flux of curl of \vec{F} on S.

Soln. $\nabla \times \vec{F}=(2,4,6)$ using the formula. (This can be confirmed if you know the advanced identity $\nabla \times(\omega \times x)=(\nabla \cdot \vec{x}) \omega-(\omega \cdot \nabla) \vec{x}=2 \omega$-This of course is not expected from you. You can just use the formula to compute this)

Then parametrize the surface $\vec{x}(\phi, \theta)=(2 \sin \phi \cos \theta, 2 \sin \phi \sin \theta, 2 \cos \phi)$ for $0 \leq \phi \leq \pi / 2,0 \leq \theta \leq 2 \pi . \vec{N} d A=\vec{x}_{\phi} \times \vec{x}_{\theta} d \phi d \theta$. Plugging this in and computing, the answer will be $4 \pi * 6$

4.2 Divergence theorem(Gauss theorem)

This is about the flux on a closed surface:

$$
\oiint_{S} \vec{v} \cdot \vec{N} d A=\iiint_{R} \operatorname{div}(\vec{v}) d V=\iiint_{R} \nabla \cdot \vec{v} d V
$$

This has the same explanation as the divergence form of Green's theorem.

4.3 Stokes Theorem

This is about the circulation on a closed curve in $3 D$ space. It's Green's theorem in $3 D$ space.

$$
\oint_{C} \vec{v} \cdot d \vec{x}=\iint_{S} \operatorname{curl}(\vec{v}) \cdot \vec{N} d A
$$

Here S can be any surface that has the boundary C and $\operatorname{curl}(\vec{v})=\nabla \times \vec{v}$
The curl is just the cross product between ∇ and \vec{v}

