
1. (Line integrals–Using parametrization. Two types and the flux integral)

Formulas: ds = |~x′(t)|dt, d~x = ~x′(t)dt and d~x = ~Tds since ~T = ~x′(t)/|~x′(t)|.
Another one is ~Nds = ~Tds× ẑ = (dx, dy)× ẑ = (dy,−dx) in 2D.

(a). Compute the average of the polar angle on x2 + y2 = 4, y ≥ 0.

The weighted average is
´
C fds/

´
C ds

In the case here, f = θ. We parametrize the curve with ~x(t) = (2 cos t, 2 sin t), 0 ≤
t ≤ π. It’s easy to see that tan θ = y(t)/x(t) = tan t and θ = t actually.
Also ds = |~x′|dt = 2dt. Hence, the average is

θ̄ =

´ π
0
t2dt´ π

0
2dt

=
π2

2π
=
π

2

This makes sense.

(b). Let C be y = lnx, 1 ≤ x ≤ 2. Compute
´
C x

2ds

We parametrize the curve as ~x(t) = (t, ln t), 1 ≤ t ≤ 2. We can compute
that ds = |~x′|dt =

√
1 + 1/t2dt. Hence, the integral is

ˆ 2

1

t2
√

1 + 1/t2dt =

ˆ 2

1

t
√
t2 + 1dt =

ˆ 5

2

√
u

1

2
du =

1

3
u3/2|u=5

u=2

(c). Let ~F = (−2y + 2x, 2x − 2y) and C is ~x(t) = (t, t2), 0 ≤ t ≤ 1.

Compute the work done by ~F along the curve.

The field is not conservative and the curve is not closed. We have to
evaluate directly. The work is

´
C
~F · d~x

Under the parametrization, ~F = (−2t2 + 2t, 2t − 2t2) and d~x = (1, 2t)dt.
Hence, the integral is
ˆ 1

0

(1 ∗ (−2t2 + 2t) + 2t(2t− 2t2))dt =

ˆ 1

0

(2t+ 2t2 − 4t3)dt = 2/3

(d). Let C be the line segment from (1, 2) to (−1, 2). Find the rate at
which the amount of fluid flows across this curve where the velocity field
is ~v = 4xyî− y2ĵ.
Parametrize the curve: ~x(t) = (1 − 2t, 2), 0 ≤ t ≤ 1. The integral is´
C ~v · ~Nds. The curve is not closed and we have to compute directly.

You may want to find ~N and ds respectively. If you do this, ~x′ = (−2, 0)

and ~T = (−1, 0). Hence ~N = (0, 1) and ds = |~x′|dt = 2dt. However, we

can use the formula directly ~Nds = (dy,−dx) = (0dt,−(−2dt)) = (0, 2)dt.
Anyway, the integral is

ˆ 1

0

(
4(1− 2t) ∗ 2

−4

)
·
(

0
2

)
dt = −8

This means the flow is actually downward.

1



2. (Line integrals of conservative fields–the fundamental theorem)

(a). Is the field ~F = (sin(y2) + 4x3y, 2xy cos(y2) + x4) conservative? If

yes, find the potential φ so that ~F = −∇φ(note in our current textbook,
there’s a negative sign in the front of gradient.)

We check that Py = 2y cos(y2) + 4x3 and Qx = 2y cos(y2) + 4x3. They
are equal and the domain is simply connected. Then, yes. To find the
potential, we find f first.

f =

ˆ
Pdx = x sin(y2) + x4y + g(y)

Using the fact fy = Q, we figure out g′ = 0 and hence f = x sin(y2) +
x4y + C. One possible φ = −x sin(y2)− x4y
(b). Let ~F = (2y+2x, 2x−2y) and C is ~x(t) = (t, t2), 0 ≤ t ≤ 1. Compute

the work done by ~F along the curve.

Notice that the field is conservative and we find f = x2 + 2xy − y2 + C.
The starting point is (0, 0) while the end point is (1, 1). Hence

ˆ
∇f · d~x = f(1, 1)− f(0, 0) = 2

(c). Let ~F = (2x+ 2y, 2x+ 2y, z). Is this field conservative? Let C be the

line segment from (1, 1, 0) to (1, 2, 2). Find the line integral
´
C
~F · ~Tds

We check that ∇× ~F = 0. It’s conservative. If you observe, you may guess
out the function quickly f = x2 + 2xy + y2 + 1

2z
2 + C. If you can’t, you

may just integrate:

f =

ˆ
(2x+ 2y)dx = x2 + 2xy + g(y, z)

Then, fy = 2x+ gy = 2x+ 2y and hence gy = 2y.

g =

ˆ
2ydy = y2 + h(z)

Finally, fz = gz = h′(z) = z. You solve h(z) = z2/2 + C

Noticing ~Tds = d~x and using the fundamental theorem, the answer is

f(1, 2, 2)− f(1, 1, 0) = (1 + 4 + 4 + 2)− (1 + 2 + 1 + 0) = 7

3. (Line integrals on closed curve–Green’s theorem. Two versions)

(a). Let C be the boundary of the region 0 ≤ y ≤ 1, y2 ≤ x ≤ 1 with
counterclockwise orientation. Compute

¸
C y

2 sin(x2)dx
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Applying Green’s, we have

¨
D

−2y sin(x2)dA = −2

ˆ 1

0

ˆ 1

y2
y sin(x2)dxdy

Change the order of integration

−2

ˆ 1

0

ˆ √x
0

y sin(x2)dydx = −
ˆ 1

0

x sin(x2)dx =
1

2
cos 1− 1

2

(b). Given ~F = (x2y,−xy2) and C is the boundary of the unit circle

oriented counterclockwisely. Compute the circulation of ~F on the curve.
(Circulation is

¸
C
~F · d~x)

The circulation equals

˛
C
x2ydx− xy2dy =

¨
D

(−x2 − y2)dA = −
ˆ 2π

0

ˆ 1

0

r2rdrdθ = −π
2

(c). Let ~v = (2x3,−y3) and C be the circle x2 + y2 = 4 oriented counter-
clockwisely. Compute the outer flux of ~v on the curve.

˛
C
~v · ~Nds =

¨
D

∇ · ~vdA =

¨
D

(6x2 − 3y2)dA

=

ˆ 2π

0

ˆ 2

0

(6 ∗ r2 cos2 θ − 3 ∗ r2 sin2 θ)rdrdθ

We integrate on θ first using double angle formula and have

π

ˆ 2

0

(6 ∗ r2 − 3 ∗ r2)rdr = π
3

4
∗ 24 = 12π

(d). Compute
¸
C xdy (i). Along the boundary of ellipse x2/4+y2 = 1 (ii).

Along a ∞ shaped curve with the right loop oriented counterclockwisely,
assuming the right loop encloses area 3 and the left loop encloses area 2.

(i). We compute the line integral directly. ~x(t) = (2 cos t, sin t), 0 ≤ t <
2π. Notice that t is no longer the polar angle opposed to the circle case.

Then, the integral is
´ 2π
0

2 cos t cos tdt =
´ 2π
0

(1+cos(2t))dt = 2π. Actually,
by Green’s, the integral is

˜
dxdy = Area.

(ii). Applying Green’s, we have
˜
D
dA. However, the loop is counter-

clockwise on the right but clockwise on the left half. So the answer is
Area(right)−Area(left) = 3− 2 = 1
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(e*) Let C be any closed in the plane that encloses the origin. Let ~v =
(−y/(x2 + y2), x/(x2 + y2)). Compute

¸
C ~v · d~x.

The idea is to isolate the singular point (0, 0) with a small circle with
radius r because we can’t apply Green’s directly. Let C1 be the boundary
of the small circle. Then, noticing Py = Qx for ~v, we have

ˆ
C
~v · d~x =

ˆ
C1
~v · d~x

On this small circle, x = r cos t, y = r sin t or ~x(t) = (r cos t, r sin t), 0 ≤
t < 2π. Using the parametrization, we can compute the line integral
directly. The answer is 2π

4. (Surface Integrals–Basic definition and parametrization)

(a). Parametrize the surfaces and compute d~S = ~NdA, dA for (i) 0 ≤
x, y ≤ 3, z = 1. (ii). z = xy, 1 ≤ x ≤ 2, 1 ≤ y ≤ 3. (iii). z =√
x2 + y2, 1 ≤ z ≤ 2

(i). We let u = x, v = y and we see that z = 1 always. Hence, ~x(u, v) =

uî + vĵ + k̂ = (u, v, 1) with 0 ≤ u, v ≤ 3. ~NdA = ~xu × ~xvdudv = k̂dudv.

Hence, dA = | ~NdA| = |ẑdudv| = dudv

(ii). Let x = u, y = v. Then, z = uv. Then, ~x(u, v) = (u, v, uv) with

1 ≤ u ≤ 2, 1 ≤ v ≤ 3. We compute that ~NdA = (1, 0, v)× (0, 1, u)dudv =
(−v,−u, 1)dudv. Then, dA = |(−v,−u, 1)|dudv =

√
1 + u2 + v2dudv

(iii). You can use Cartesian as well. Here, a better choice is to use
cylindrical coordinates. Then, we see that x = r cos θ, y = r sin θ, z = r.
Hence, we have ~x(r, θ) = (r cos θ, r sin θ, r) with 1 ≤ r ≤ 2, 0 ≤ θ < 2π.
We then, compute that

~NdA = (cos θ, sin θ, 1)×(−r sin θ, r cos θ, 0)drdθ = (−r cos θ,−r sin θ, r)drdθ

Hence dA = r
√

1 + 1drdθ =
√

2rdrdθ

Compare this with flat plane in cylindrical coordinates, or polar coordi-
nates. In polar, ~x = (r cos θ, r sin θ, z0) where z0 is a constant. You get
dA = rdrdθ, which is different from our dA here.

(b). Let S be the surface z = sin(xy) for 0 ≤ x, y ≤ π/2. Set up the
integral for

˜
S(x+ z)dA

~x(u, v) = (u, v, sin(uv)).

dA = |~xu × ~xv|dudv =
√
v2 cos2(uv) + u2 cos2(uv) + 1dudv

The integral is

ˆ π/2

0

ˆ π/2

0

(u+ sin(uv))
√
v2 cos2(uv) + u2 cos2(uv) + 1dudv
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(c*). Consider the surface determined by F (x, y, z) = 1, 1 ≤ z ≤ 2 where

F (x, y, z) = x2+y2−z2. Set up the integral
˜
S ~v· ~NdA where ~v = (x, 1, 0).

We parametrize the surface as ~x(x, y) = (x, y, z(x, y)). Using implicit
differentiation, we have

~xx = (1, 0,
x

z
), ~xy = (0, 1,

y

z
)

We have
~NdA = ~xx × ~xydxdy = (−x/z,−y/z, 1)dxdy

The integral is ¨
D

(−x
2

z
− y

z
)dxdy

Further, we solve z =
√
x2 + y2 − 1 and we can plug in. The integration

region is 12 + 1 ≤ x2 + y2 ≤ 22 + 1 or 2 ≤ x2 + y2 ≤ 5.

Using polar coordinates, the integral is

ˆ 2π

0

ˆ √5

√
2

(−r
2 cos2 θ√
r2 − 1

− r sin θ√
r2 − 1

)rdrdθ

5. (Changing line integrals to flux integrals(surface version)-Stokes Theorem)

(a). Let C be the intersection of x2 + y2 = 4 with x+ y+ z = 8. Evaluate¸
C(x+y)dx+(y+z)dy+(z+x)dz in two ways, where C is counterclockwise

when viewed above.

This is the circulation
¸
C
~F · d~x where ~F = (x+ y, y + z, z + x).

The first way is to evaluate this directly by parametrization: Let x =
2 cos t, y = 2 sin t. Then, z can be determined from the equation of the
plane: z = 8 − x − y = 8 − 2 sin t − 2 cos t. Hence, the curve can be
parametrized as ~x(t) = (2 cos t, 2 sin t, 8 − 2 cos t − 2 sin t). Also, d~x =

(−2 sin t, 2 cos t, 2 sin t−2 cos t)dt. On this curve, the force is ~F = (2 cos t+
2 sin t, 8− 2 cos t, 8− 2 sin t) .The line integral is thus

ˆ 2π

0

(2 sin t+2 cos t)(−2 sin t)dt+(8−2 cos t)2 cos tdt+(8−2 sin t)(2 sin t−2 cos t)dt

= −4π − 4π − 4π = −12π

The second way is to use Stokes Theorem. We pick the surface to be
the plane z = 8 − x − y inside the cylinder. The surface can thus be
parametrized as ~x(x, y) = (x, y, 8− x− y) with x2 + y2 ≤ 4
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We compute the curl ∇× ~F = (−1,−1,−1). We then compute

~NdA = (1, 0,−1)× (0, 1,−1)dxdy = (1, 1, 1)dxdy

Hence, we have

¨
D

(−3)dxdy =

ˆ 2π

0

ˆ 2

0

(−3)rdrdθ = −3 ∗ 4π

(b). Use Stokes’ Theorem to compute the circulation of ~F = (y2 + z2)̂i+

(x2 + z2)ĵ + (x2 + y2)k̂ along the boundary of the triangle cut from the
plane x+y+z = 1 by the first octant, counterclockwise when viewed from
above.

∇× ~F = (2y − 2z, 2z − 2x, 2x − 2y). We use the surface as the triangle.
Then, we parametrize the surface as ~x(x, y) = (x, y, 1 − x − y). We have
~NdA = (1, 1, 1)dxdy. Hence the integral is

¨
D

(2y − 2z + 2z − 2x+ 2x− 2y)dxdy = 0

(c). Let S be the hemisphere x2 +y2 +z2 = 9, z ≥ 0 with normal pointing
away from origin. Let ~v = (−y, x3 + xy2, xyz). Compute the flux:

¨
S
curl(~v) · ~NdA

First of all, using Stokes, this is equal to˛
C
~v · d~x

where C is the circle x2 + y2 = 9, z = 0. Here, one may parametrize the
curve and get

~x = (3 cos t, 3 sin t, 0), 0 ≤ t < 2π

and reduce the integral to

ˆ 2π

0

(−3 sin t, 27 cos3 t+ 27 cos t sin2 t, 0) · (−3 sin t, 3 cos t, 0)dt

Another smarter way is to notice dz = 0 on the circle and thus the integral
is actually ˛

C
−ydx+ (x3 + xy2)dy

in xy plane. Then, applying Green’s Theorem, this is¨
D

(1 + 3x2 + y2)dA
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where D is the disk. This can be evaluated using polar coordinates.

(d). Let A(1, 0, 0), B(0, 2, 0) and C(0, 0,−1). Consider the closed curve

C = AB + BC + CA. Let ~F = (−y, x, z). Compute the line integral¸
C
~F · ~Tds.

The integral is just
¸
C
~F · d~x. The curve is counterclockwise when viewed

above. Hence, we can apply Stokes’ Theorem and have:

˛
C
~F · d~x =

¨
S
∇× ~F · ~NdA

, the flux of curl. Here S can be picked as the plane determined by the
three points.

It’s easy to compute that ∇ × ~F = (0, 0, 2). Now we need to determine
the plane:

You can determine the normal ~n =
−−→
AB ×

−→
AC and use AP · ~n = 0 to fig-

ure out. However, according to the three points, it’s easy to find the
plane is x/1 + y/2 + z/(−1) = 1. In general, the plane that passes
(a, 0, 0), (0, b, 0), (0, 0, c) is x/a + y/b + z/c = 1. Anyhow, the surface
is parametrized as

~x(x, y) = (x, y, x+ y/2− 1), x+ y/2 ≤ 1, x ≥ 0, y ≥ 0

~NdA = (−1,−1/2, 1)dxdy. Hence the integral is

ˆ 1

0

ˆ 2(1−x)

0

2dydx =

ˆ 1

0

4(1− x)dx = 2

6. (Reducing flux integral on closed surfaces to volume integrals-Divergence
Theorem)

(a). Let R be the region inside the sphere x2 + y2 + z2 = 4 and above xy
plane. Let S be the boundary of this region which is thus closed. Compute
the flux

‚
S
~v · ~NdA where ~v = (xy2, x2y + y3/3, x2z).

Applying divergence theorem, we have

˚
D

∇ · ~vdV =

˚
D

(y2 + (x2 + y2) + x2)dV

This is good for spherical coordinates. 2(x2 + y2) = 2ρ2 sin2 φ, dV =
ρ2 sinφdρdφdθ and 0 ≤ ρ ≤ 2, 0 ≤ θ < 2π, 0 ≤ φ ≤ π/2

ˆ 2π

0

ˆ π/2

0

ˆ 2

0

2ρ2 sin2 φρ2 sinφdρdφdθ
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For sin3 φ, just write it as (1− cos2 φ) sinφ and do sub u = cosφ.

(b). Let D be the region x2 + y2 ≤ 4, 0 ≤ z ≤ 3. Compute the flux of
~v = (−y, x, z) through the boundary of D. Draw the field and explain
intuitively why the flux is positive.

Applying the divergence,

˚
D

(0 + 0 + 1)dV =

˚
D

dV

The region is good for cylindrical coordinates. 0 ≤ r ≤ 2, 0 ≤ θ < 2π, 0 ≤
z ≤ 3, dV = rdrdθdz. Answer is 12π

(c). Let ~v = (y2, xyz, xz2). Compute the rate at which the fluid flows out
of the cube 0 ≤ x, y, z ≤ 1.

We need to evaluate
‚
S
~v · ~NdA. Applying divergence theorem,

˚
D

(0 + xz + 2xz)dV =

ˆ 1

0

ˆ 1

0

ˆ 1

0

3xzdxdydz = 3/4

(d). Consider S1 : z =
√
x2 + y2 and S2 : z = x2 + y2. These two surfaces

enclose a region R. The boundary of this region is S with outer normal
~N . Compute the flux integral

˜
S
~F · ~NdA where ~F = (y, x, z2/2).

The surface is closed. We just apply the Divergence theorem and have

˚
R
∇ · ~FdV =

˚
R
zdV

The region is actually above z = x2 + y2 and below z =
√
x2 + y2. The

intersection of them is when x2+y2 = 1 or x = y = 0. Anyway, this region
can be written conveniently in cylindrical coordinate, which is 0 ≤ r ≤ 1,
0 ≤ θ < 2π, r2 ≤ z ≤ r. Hence the integral is

ˆ 1

0

ˆ 2π

0

ˆ r

r2
z[rdzdθdr] = 2π

ˆ 1

0

(
1

2
r3 − 1

2
r5)dr = π/12

7. (Curl, Divergence etc)

Let ~v = (xy2, x2y+y3/3, x2z). Compute the curl curl(~v) = ∇×~v and the
divergence div(~v) = ∇ · ~v.

Divergence is easy:

∇ · ~v = (xy2)x + (x2y + y3/3)y + (x2z)z = 2x2 + 2y2
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Curl is∣∣∣∣∣∣
~i ∂x xy2

~j ∂y x2y + y3/3
~k ∂z x2z

∣∣∣∣∣∣
=~i[(x2z)y−(x2y+y3/3)z]−~j[(x2z)x−(xy2)z]+~k[(x2y+y3/3)x−(xy2)y]

= (0,−2xz, 0)

8. (Tangent planes, Implicit differentiation, chain rule)

(a). Consider the implicit functions defined by xy−yz+exz = 3. Compute
∂z/∂x.

If you forget the formula, use F (x, y, z(x, y)) = C to recover. Taking
derivative on x, you have Fx + Fz

∂z
∂x = 0. The derivative is

∂z

∂x
= −Fx

Fz
= − y + zexz

−y + xexz

(b). Find the tangent plane of the surface defined in (a) at the point
(0,−1, z0).

We first solve z0. Plugging the values, 0+z0 +1 = 3 and hence z0 = 2. To
compute the tangent plane of the level set, we compute the normal vector
∇F = (y + zexz, x− z,−y + xezx) = (1,−2, 1). The tangent plane is 1

−2
1

 ·
 x− 0

y + 1
z − 2

 = 0

(c). Compute the linear approximation of z = 2x−y at (1, 1), and the
tangent line of the level set passing through (1, 1).

Let f(x, y) = 2x−y. We have f(1, 1) = 1, fx = 2x−y ln 2 and fx(1, 1) =
ln 2. Similarly, fy(1, 1) = − ln 2. Hence the linear approximation is

f(x, y) ≈ 1 + ln 2(x− 1)− ln 2(y − 1)

The graph of this function is the tangent plane of the graph. Also you
should be able to compute the second order Taylor expansion.

The tangent line to the level set is

(ln 2)(x− 1)− (ln 2)(y − 1) = 0
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(d). If ∇f(1, 2, 3) = (−2, 3, 5). Let g(x, y) = f(xy, x + y, y2 + 2x). Com-
pute gx(1, 1) and gy(1, 1)

Use the chain rule. We assume the function f(u, v, w). Then, we have

gx(x, y) = fuux + fvvx + fwwx = fuy + fv ∗ 1 + fw ∗ 2

Plugging in (1, 1), we have

gx(1, 1) = fu(1, 2, 3) ∗ 1 + fv(1, 2, 3) ∗ 1 + fw(1, 2, 3) ∗ 2 = −2 + 3 + 10 = 11

Computing gy(1, 1) is similar. The answer is 11.

9. (Volume integrals in spherical coordinates; cylindrical coordinates)

(a). Find the moment of inertia about z-axis of the ball x2 + y2 + z2 ≤ 1
with density µ(x, y, z) = z2

The moment of inertia about z axis is

Iz =

˚
D

(x2 + y2)µ(x, y, z)dV

This problem is good for spherical. 0 ≤ ρ ≤ 1, 0 ≤ θ < 2π, 0 ≤ φ ≤ π and
µ = ρ2 cos2 φ. x2 + y2 = ρ2 sin2 φ. Further, dV = ρ2 sinφdρdθdφ

Then, the integral is

ˆ 2π

0

ˆ π

0

ˆ 1

0

ρ2 sin2 φρ2 cos2 φρ2 sinφdρdφdθ =
2π

7

ˆ π

0

sin3 φ cos2 φdφ

This integral can be evaluated by writing sin3 φ = (1 − cos2 φ) sinφ and
doing u = cosφ. You can finish it

(b). Find the center of mass of the region inside x2 + y2 ≥ 1, x2 + y2 ≤ 4,
bounded by z = x2 + y2 and xy plane with unit density.

The domain is symmetric in x and µ(x, y, z) = 1 = µ(−x, y, z). We know
x̄ = 0 by symmetry. Similarly, ȳ = 0. We only have to compute z̄ which
is

z̄ =

˝
zµdV˝
µdV

The domain is good for cylindrical. In cylindrical, we have 1 ≤ r ≤ 2, 0 ≤
θ < 2π, 0 ≤ z ≤ r2 and µ = 1. Further, dV = rdrdθdz. Hence, we have

z̄ =

´ 2
1

´ 2π
0

´ r2
0
zrdzdθdr´ 2

1

´ 2π
0

´ r2
0
rdzdθdr

=
π
´ 2
1
r5dr

2π
´ 2
1
r3dr

=
63

45

The center is (0, 0, 63/45)
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10. (2nd derivative test; Lagrange multiplier)

(a). Consider f(x, y) = x3 + y3 − 3xy. Find all critical points on R2 and
classify them.

fx = 3x2− 3y = 0 and fy = 3y2− 3x = 0. Hence, x4− x = 0 and we have
x = 0, x = 1. Using y = x2, we have (0, 0), (1, 1).

fxx = 6x, fxy = −3, fyy = 6y

At (0, 0), fxxfyy − f2xy < 0, the point is a saddle point; at (1, 1), the three
numbers are 6,−3, 6 respectively and fxxfyy − f2xy = 36 − 9 > 0, further
fxx > 0 and the point is a local min.

(b). Find the minimum surface area of a rectangular box without bottom,
provided the volume is V .

Let the dimensions be x, y, z. f(x, y) = xy+2xz+2yz with the constraint
g(x, y, z) = xyz = V . Then

y + 2z = λyz

x+ 2z = λxz

2x+ 2y = λxy

Now, you have x(y+ 2z) = y(x+ 2z) = z(2x+ 2y). Then, x = y, x = 2z.
Hence x2 ∗ x/2 = V or x = 3

√
2V . Hence y, z can be found.

There must be a minimum value and we only have one candidate. This
should be the point. Plugging the values and the area is . . .
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