- 1. (Line integrals–Using parametrization. Two types and the flux integral)
 - Formulas: $ds = |\vec{x}'(t)|dt$, $d\vec{x} = \vec{x}'(t)dt$ and $d\vec{x} = \vec{T}ds$ since $\vec{T} = \vec{x}'(t)/|\vec{x}'(t)|$. Another one is $\vec{N}ds = \vec{T}ds \times \hat{z} = (dx, dy) \times \hat{z} = (dy, -dx)$ in 2D.
 - (a). Compute the average of the polar angle on $x^2 + y^2 = 4, y \ge 0$.
 - (b). Let \mathcal{C} be $y = \ln x$, $1 \le x \le 2$. Compute $\int_{\mathcal{C}} x^2 ds$
 - (c). Let $\vec{F} = (-2y + 2x, 2x 2y)$ and \mathcal{C} is $\vec{x}(t) = (t, t^2), 0 \le t \le 1$. Compute the work done by \vec{F} along the curve.
 - (d). Let \mathcal{C} be the line segment from (1,2) to (-1,2). Find the rate at which the amount of fluid flows across this curve where the velocity field is $\vec{v} = 4xy\hat{i} y^2\hat{j}$.
- 2. (Line integrals of conservative fields—the fundamental theorem)
 - (a). Is the field $\vec{F} = (\sin(y^2) + 4x^3y, 2xy\cos(y^2) + x^4)$ conservative? If yes, find the potential ϕ so that $\vec{F} = -\nabla \phi$ (note in our current textbook, there's a negative sign in the front of gradient.)
 - (b). Let $\vec{F} = (2y + 2x, 2x 2y)$ and C is $\vec{x}(t) = (t, t^2), 0 \le t \le 1$. Compute the work done by \vec{F} along the curve.
 - (c). Let $\vec{F}=(2x+2y,2x+2y,z)$. Is this field conservative? Let \mathcal{C} be the line segment from (1,1,0) to (1,2,2). Find the line integral $\int_{\mathcal{C}} \vec{F} \cdot \vec{T} ds$
- 3. (Line integrals on closed curve–Green's theorem. Two versions)
 - (a). Let $\mathcal C$ be the boundary of the region $0 \le y \le 1, y^2 \le x \le 1$ with counterclockwise orientation. Compute $\oint_{\mathcal C} y^2 \sin(x^2) dx$
 - (b). Given $\vec{F} = (x^2y, -xy^2)$ and \mathcal{C} is the boundary of the unit circle oriented counterclockwisely. Compute the circulation of \vec{F} on the curve. (Circulation is $\oint_{\mathcal{C}} \vec{F} \cdot d\vec{x}$)
 - (c). Let $\vec{v} = (2x^3, -y^3)$ and C be the circle $x^2 + y^2 = 4$ oriented counter-clockwisely. Compute the outer flux of \vec{v} on the curve.
 - (d). Compute $\oint_{\mathcal{C}} x dy$ (i). Along the boundary of ellipse $x^2/4 + y^2 = 1$ (ii). Along a ∞ shaped curve with the right loop oriented counterclockwisely, assuming the right loop encloses area 3 and the left loop encloses area 2.
 - (e*) Let \mathcal{C} be any closed in the plane that encloses the origin. Let $\vec{v} = (-y/(x^2+y^2), x/(x^2+y^2))$. Compute $\oint_{\mathcal{C}} \vec{v} \cdot d\vec{x}$.
- 4. (Surface Integrals–Basic definition and parametrization)
 - (a). Parametrize the surfaces and compute $d\vec{S}=\vec{N}dA,\ dA$ for (i) $0\leq x,y\leq 3,z=1.$ (ii). $z=xy,1\leq x\leq 2,1\leq y\leq 3.$ (iii). $z=\sqrt{x^2+y^2},1\leq z\leq 2$
 - (b). Let \mathcal{S} be the surface $z = \sin(xy)$ for $0 \le x, y \le \pi/2$. Set up the integral for $\iint_{\mathcal{S}} (x+z) dA$

- (c*). Consider the surface determined by $F(x,y,z)=1, 1\leq z\leq 2$ where $F(x,y,z)=x^2+y^2-z^2$. Set up the integral $\iint_S \vec{v}\cdot\vec{N}dA$ where $\vec{v}=(x,1,0)$.
- 5. (Changing line integrals to flux integrals (surface version)-Stokes Theorem)
 - (a). Let $\mathcal C$ be the intersection of $x^2+y^2=4$ with x+y+z=8. Evaluate $\oint_{\mathcal C} (x+y) dx + (y+z) dy + (z+x) dz$ in two ways, where $\mathcal C$ is counterclockwise when viewed above.
 - (b). Use Stokes' Theorem to compute the circulation of $\vec{F} = (y^2 + z^2)\hat{i} + (x^2 + z^2)\hat{j} + (x^2 + y^2)\hat{k}$ along the boundary of the triangle cut from the plane x+y+z=1 by the first octant, counterclockwise when viewed from above.
 - (c). Let S be the hemisphere $x^2 + y^2 + z^2 = 9, z \ge 0$ with normal pointing away from origin. Let $\vec{v} = (-y, x^3 + xy^2, xyz)$. Compute the flux:

$$\iint_{\mathcal{S}} curl(\vec{v}) \cdot \vec{N} dA$$

- (d). Let A(1,0,0), B(0,2,0) and C(0,0,-1). Consider the closed curve $\mathcal{C} = AB + BC + CA$. Let $\vec{F} = (-y,x,z)$. Compute the line integral $\oint_{\mathcal{C}} \vec{F} \cdot \vec{T} ds$.
- 6. (Reducing flux integral on closed surfaces to volume integrals-Divergence Theorem)
 - (a). Let R be the region inside the sphere $x^2 + y^2 + z^2 = 4$ and above xy plane. Let S be the boundary of this region which is thus closed. Compute the flux $\oiint_S \vec{v} \cdot \vec{N} dA$ where $\vec{v} = (xy^2, x^2y + y^3/3, x^2z)$.
 - (b). Let D be the region $x^2 + y^2 \le 4, 0 \le z \le 3$. Compute the flux of $\vec{v} = (-y, x, z)$ through the boundary of D. Draw the field and explain intuitively why the flux is positive.
 - (c). Let $\vec{v}=(y^2,xyz,xz^2)$. Compute the rate at which the fluid flows out of the cube $0\leq x,y,z\leq 1$.
 - (d). Consider $S_1: z = \sqrt{x^2 + y^2}$ and $S_2: z = x^2 + y^2$. These two surfaces enclose a region \mathcal{R} . The boundary of this region is S with outer normal \vec{N} . Compute the flux integral $\iint_S \vec{F} \cdot \vec{N} dA$ where $\vec{F} = (y, x, z^2/2)$.
- 7. (Curl, Divergence etc)

Let $\vec{v} = (xy^2, x^2y + y^3/3, x^2z)$. Compute the curl $curl(\vec{v}) = \nabla \times \vec{v}$ and the divergence $div(\vec{v}) = \nabla \cdot \vec{v}$.

- 8. (Tangent planes, Implicit differentiation, chain rule)
 - (a). Consider the implicit functions defined by $xy-yz+e^{xz}=3$. Compute $\partial z/\partial x$.
 - (b). Find the tangent plane of the surface defined in (a) at the point $(0, -1, z_0)$.

- (c). Compute the linear approximation of $z = 2^{x-y}$ at (1,1), and the tangent line of the level set passing through (1,1).
- (d). If $\nabla f(1,2,3) = (-2,3,5)$. Let $g(x,y) = f(xy,x+y,y^2+2x)$. Compute $g_x(1,1)$ and $g_y(1,1)$
- 9. (Volume integrals in spherical coordinates; cylindrical coordinates)
 - (a). Find the moment of inertia about z-axis of the ball $x^2+y^2+z^2\leq 1$ with density $\mu(x,y,z)=z^2$
 - (b). Find the center of mass of the region inside $x^2+y^2\geq 1, x^2+y^2\leq 4$, bounded by $z=x^2+y^2$ and xy plane with unit density.
- 10. (2nd derivative test; Lagrange multiplier)
 - (a). Consider $f(x,y) = x^3 + y^3 3xy$. Find all critical points on \mathbb{R}^2 and classify them.
 - (b). Find the minimum surface area of a rectangular box without bottom, provided the volume is ${\cal V}.$