1. (Line integrals-Using parametrization. Two types and the flux integral)

Formulas: $d s=\left|\vec{x}^{\prime}(t)\right| d t, d \vec{x}=\vec{x}^{\prime}(t) d t$ and $d \vec{x}=\vec{T} d s$ since $\vec{T}=\vec{x}^{\prime}(t) /\left|\vec{x}^{\prime}(t)\right|$.
Another one is $\vec{N} d s=\vec{T} d s \times \hat{z}=(d x, d y) \times \hat{z}=(d y,-d x)$ in $2 D$.
(a). Compute the average of the polar angle on $x^{2}+y^{2}=4, y \geq 0$.
(b). Let \mathcal{C} be $y=\ln x, 1 \leq x \leq 2$. Compute $\int_{\mathcal{C}} x^{2} d s$
(c). Let $\vec{F}=(-2 y+2 x, 2 x-2 y)$ and \mathcal{C} is $\vec{x}(t)=\left(t, t^{2}\right), 0 \leq t \leq 1$. Compute the work done by \vec{F} along the curve.
(d). Let \mathcal{C} be the line segment from $(1,2)$ to $(-1,2)$. Find the rate at which the amount of fluid flows across this curve where the velocity field is $\vec{v}=4 x y \hat{i}-y^{2} \hat{j}$.
2. (Line integrals of conservative fields-the fundamental theorem)
(a). Is the field $\vec{F}=\left(\sin \left(y^{2}\right)+4 x^{3} y, 2 x y \cos \left(y^{2}\right)+x^{4}\right)$ conservative? If yes, find the potential ϕ so that $\vec{F}=-\nabla \phi$ (note in our current textbook, there's a negative sign in the front of gradient.)
(b). Let $\vec{F}=(2 y+2 x, 2 x-2 y)$ and \mathcal{C} is $\vec{x}(t)=\left(t, t^{2}\right), 0 \leq t \leq 1$. Compute the work done by \vec{F} along the curve.
(c). Let $\vec{F}=(2 x+2 y, 2 x+2 y, z)$. Is this field conservative? Let \mathcal{C} be the line segment from $(1,1,0)$ to $(1,2,2)$. Find the line integral $\int_{\mathcal{C}} \vec{F} \cdot \vec{T} d s$
3. (Line integrals on closed curve-Green's theorem. Two versions)
(a). Let \mathcal{C} be the boundary of the region $0 \leq y \leq 1, y^{2} \leq x \leq 1$ with counterclockwise orientation. Compute $\oint_{\mathcal{C}} y^{2} \sin \left(x^{2}\right) d x$
(b). Given $\vec{F}=\left(x^{2} y,-x y^{2}\right)$ and \mathcal{C} is the boundary of the unit circle oriented counterclockwisely. Compute the circulation of \vec{F} on the curve. (Circulation is $\oint_{\mathcal{C}} \vec{F} \cdot d \vec{x}$)
(c). Let $\vec{v}=\left(2 x^{3},-y^{3}\right)$ and \mathcal{C} be the circle $x^{2}+y^{2}=4$ oriented counterclockwisely. Compute the outer flux of \vec{v} on the curve.
(d). Compute $\oint_{\mathcal{C}} x d y$ (i). Along the boundary of ellipse $x^{2} / 4+y^{2}=1$ (ii). Along a ∞ shaped curve with the right loop oriented counterclockwisely, assuming the right loop encloses area 3 and the left loop encloses area 2.
(e^{*}) Let \mathcal{C} be any closed in the plane that encloses the origin. Let $\vec{v}=$ $\left(-y /\left(x^{2}+y^{2}\right), x /\left(x^{2}+y^{2}\right)\right)$. Compute $\oint_{\mathcal{C}} \vec{v} \cdot d \vec{x}$.
4. (Surface Integrals-Basic definition and parametrization)
(a). Parametrize the surfaces and compute $d \vec{S}=\vec{N} d A$, $d A$ for (i) $0 \leq$ $x, y \leq 3, z=1$. (ii). $z=x y, 1 \leq x \leq 2,1 \leq y \leq 3 . \quad$ (iii). $z=$ $\sqrt{x^{2}+y^{2}}, 1 \leq z \leq 2$
(b). Let \mathcal{S} be the surface $z=\sin (x y)$ for $0 \leq x, y \leq \pi / 2$. Set up the integral for $\iint_{\mathcal{S}}(x+z) d A$
(c*). Consider the surface determined by $F(x, y, z)=1,1 \leq z \leq 2$ where $F(x, y, z)=x^{2}+y^{2}-z^{2}$. Set up the integral $\iint_{\mathcal{S}} \vec{v} \cdot \vec{N} d A$ where $\vec{v}=(x, 1,0)$.
5. (Changing line integrals to flux integrals(surface version)-Stokes Theorem) (a). Let \mathcal{C} be the intersection of $x^{2}+y^{2}=4$ with $x+y+z=8$. Evaluate $\oint_{\mathcal{C}}(x+y) d x+(y+z) d y+(z+x) d z$ in two ways, where \mathcal{C} is counterclockwise when viewed above.
(b). Use Stokes' Theorem to compute the circulation of $\vec{F}=\left(y^{2}+z^{2}\right) \hat{i}+$ $\left(x^{2}+z^{2}\right) \hat{j}+\left(x^{2}+y^{2}\right) \hat{k}$ along the boundary of the triangle cut from the plane $x+y+z=1$ by the first octant, counterclockwise when viewed from above.
(c). Let S be the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geq 0$ with normal pointing away from origin. Let $\vec{v}=\left(-y, x^{3}+x y^{2}, x y z\right)$. Compute the flux:

$$
\iint_{\mathcal{S}} \operatorname{curl}(\vec{v}) \cdot \vec{N} d A
$$

(d). Let $A(1,0,0), B(0,2,0)$ and $C(0,0,-1)$. Consider the closed curve $\mathcal{C}=A B+B C+C A$. Let $\vec{F}=(-y, x, z)$. Compute the line integral $\oint_{\mathcal{C}} \vec{F} \cdot \vec{T} d s$.
6. (Reducing flux integral on closed surfaces to volume integrals-Divergence Theorem)
(a). Let R be the region inside the sphere $x^{2}+y^{2}+z^{2}=4$ and above $x y$ plane. Let S be the boundary of this region which is thus closed. Compute the flux $\oiint_{S} \vec{v} \cdot \vec{N} d A$ where $\vec{v}=\left(x y^{2}, x^{2} y+y^{3} / 3, x^{2} z\right)$.
(b). Let D be the region $x^{2}+y^{2} \leq 4,0 \leq z \leq 3$. Compute the flux of $\vec{v}=(-y, x, z)$ through the boundary of D. Draw the field and explain intuitively why the flux is positive.
(c). Let $\vec{v}=\left(y^{2}, x y z, x z^{2}\right)$. Compute the rate at which the fluid flows out of the cube $0 \leq x, y, z \leq 1$.
(d). Consider $\mathcal{S}_{1}: z=\sqrt{x^{2}+y^{2}}$ and $\mathcal{S}_{2}: z=x^{2}+y^{2}$. These two surfaces enclose a region \mathcal{R}. The boundary of this region is \mathcal{S} with outer normal \vec{N}. Compute the flux integral $\iint_{\mathcal{S}} \vec{F} \cdot \vec{N} d A$ where $\vec{F}=\left(y, x, z^{2} / 2\right)$.
7. (Curl, Divergence etc)

Let $\vec{v}=\left(x y^{2}, x^{2} y+y^{3} / 3, x^{2} z\right)$. Compute the $\operatorname{curl} \operatorname{curl}(\vec{v})=\nabla \times \vec{v}$ and the divergence $\operatorname{div}(\vec{v})=\nabla \cdot \vec{v}$.
8. (Tangent planes, Implicit differentiation, chain rule)
(a). Consider the implicit functions defined by $x y-y z+e^{x z}=3$. Compute $\partial z / \partial x$.
(b). Find the tangent plane of the surface defined in (a) at the point $\left(0,-1, z_{0}\right)$.
(c). Compute the linear approximation of $z=2^{x-y}$ at $(1,1)$, and the tangent line of the level set passing through $(1,1)$.
(d). If $\nabla f(1,2,3)=(-2,3,5)$. Let $g(x, y)=f\left(x y, x+y, y^{2}+2 x\right)$. Compute $g_{x}(1,1)$ and $g_{y}(1,1)$
9. (Volume integrals in spherical coordinates; cylindrical coordinates)
(a). Find the moment of inertia about z-axis of the ball $x^{2}+y^{2}+z^{2} \leq 1$ with density $\mu(x, y, z)=z^{2}$
(b). Find the center of mass of the region inside $x^{2}+y^{2} \geq 1, x^{2}+y^{2} \leq 4$, bounded by $z=x^{2}+y^{2}$ and $x y$ plane with unit density.
10. (2nd derivative test; Lagrange multiplier)
(a). Consider $f(x, y)=x^{3}+y^{3}-3 x y$. Find all critical points on \mathbb{R}^{2} and classify them.
(b). Find the minimum surface area of a rectangular box without bottom, provided the volume is V.

