
Review Working sheet 2

1. (Critical points, Taylor expansion, and 2nd derivative test)

(a) Find the Taylor expansion of f(x, y) = 2x−y
2

at (1, 1) up to second
order.

fx = 2x−y
2

ln 2, fy = 2x−y
2

ln 2(−2y), fxx = 2x−y
2

(ln 2)2, fxy = 2x−y
2

(ln 2)2(−2y)

and fyy = 2x−y
2

(ln 2)24y2 − 2(ln 2)2x−y
2

f(1, 1) = 20 = 1, fx(1, 1) = ln 2, fy(1, 1) = −2 ln 2, fxx(1, 1) = (ln 2)2,
fxy(1, 1) = −2(ln 2)2, and fyy(1, 1) = 4(ln 2)2 − 2 ln 2

The Taylor expansion(f ≈ f(1, 1)+fx(1, 1)∆x+fy(1, 1)∆y+ 1
2fxx(1, 1)∆x2+

fxy(1, 1)∆x∆y + 1
2fyy(1, 1)∆y2) is

f(x, y) ≈ 1+ln 2(x−1)−2 ln 2(y−1)+
1

2
(ln 2)2(x−1)2−2(ln 2)2(x−1)(y−1)+(2(ln 2)2−ln 2)(y−1)2

(b) Find all critical points and apply the 2nd derivative test for the fol-
lowing:

f(x, y) = 8x4 + y4 − xy2

fx = 32x3 − y2 = 0, fy = 4y3 − 2xy = 0

The second equation: y = 0 or x = 2y2. If y = 0, x = 0 and we have a
critical point (0, 0). If x = 2y2, we have 32 ∗ 8 ∗ y6 − y2 = 0. Then, y = 0
or y = ±1/(256)1/4 = ±1/4. This gives (0, 0) , (1/8, 1/4) and (1/8,−1/4).
In all, we have (0, 0), (1/8,±1/4)

fxx = 96x2, fxy = −2y, fyy = 12y2 − 2x.

At (0, 0), the three numbers are 0, 0, 0 respectively. The 2nd derivative test
is inconclusive as the form is semidefinite. However, if you look around
(0, 0), you’ll see both negative value and positive value since around origin,
the main term is −xy2. Hence, this should be kind of saddle.

At (1/8, 1/4), the three numbers are 3/2,−1/2, 1/2. Then, we have fxxfyy−
f2xy > 0, fxx > 0, this is a local min.

At (1/8,−1/4), the three numbers are 3/2, 1/2, 1/2. fxxfyy − f2xy > 0,
fxx > 0. It’s still a local min.

2. (Optimization with constraint, Lagrange multiplier)

(a). Find all the points on the surface xy − z2 + 1 = 0 that are closest to
the origin.

Let (x, y, z) be a point on the surface. Then the distance is
√
x2 + y2 + z2.

We choose f(x, y, z) = x2+y2+z2 to minimize with constraint g(x, y, z) =
xy − z2 + 1 = 0

∇g 6= ~0 on the surface, because otherwise the constraint can’t be satisfied.
Hence, we have

∇f = λ∇g g = 0
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We have equations 2x = λy, 2y = λx, 2z = λ(−2z), xy − z2 + 1 = 0

By the first equation, x = λy/2. Plugging this into the second equation,
we have 2y = λ2y/2. We have y(2− λ2/2) = 0.

If y = 0, then x = 0. The first two equations are dealt with. Plugging
them into the last equation, we get z = ±1. The third equation tells us
that λ = −1. Hence, (0, 0,±1) are the constraint critical points.

If λ = ±2. The third equation tells us that z = 0. If λ = 2, x = y and the
last equation can’t be satisfied. Hence λ = −2. Then, x = −y, y = −x.
The first two equations are dealt with. The last equation then tells us
that x = 1, y = −1 or x = −1, y = 1. Hence we have found two points
(1,−1, 0) and (−1, 1, 0)

Plugging these points into f , we see that f(0, 0,±1) = 1 and f(1,−1, 0) =
2, f(−1, 1, 0) = 2. Now let’s look at the function. As you see, when you go
far on the surface, f becomes large. This means there must be minimum
in the middle. Hence (0, 0,±1) must be the minimum points. However,
there are no global maximum points. (1,−1, 0) and (−1, 1, 0) are not
global max points.

(b). Find the minimum value of f(x, y, z) = xyz under the constraint
x2 + 2y2 + z2 = 1.

Before calculation, you notice that the surface is closed and bounded.
There must be max and min. Therefore, we can find the min by solving
Lagrange multiplier equations.

On the surface, ∇g 6= ~0. Then, the only possibility is that ∇f = λ∇g, g =
1 where g(x, y, z) = x2 + 2y2 + z2

Then, you have four equations, yz = λ2x, xz = λ4y, xy = λ2z, x2 + 2y2 +
z2 = 1. Multiplying the first equation with x, the second with y, the third
with z, we have λ2x2 = λ4y2 = λ2z2, or λx2 = λ2y2 = λz2

If λ = 0, then yz = 0, xz = 0, xy = 0. There are 6 points. However, we
see there’s no need to solve these points as the value of f at these points
must be f = xyz = 0.

If λ 6= 0, we have x2 = 2y2 = z2. Hence x2 = 1/3, z2 = 1/3, 2y2 =
1/3. Notice we care the value only. We see that (xyz)2 = 1/54 and
xyz = −1/

√
54 is the minimum. We see that this solution is not fake as

x = −1/
√

3, y = −1/
√

6, z = −1/
√

3 satisfies the requirement. This is
of course smaller than 0 as we get above. Hence the minimum value is
−1/
√

54

(c). f(x, y, z) = (x − 1)2 + (y − 2)2 + z2. Find the largest and smallest
value of f inside x2 + y2 + z2 ≤ 16.

Notice the domain is closed and bounded. The max and min must exist.

For interior extremum, we have ∇f = 0 or 2(x−1) = 0, 2(y−2) = 0, 2z =
0. We have one point (1, 2, 0). We check that 12 + 22 + 02 = 5 < 16.

2



This is in fact an interior extremum. You can use 2nd derivative test to
find the local behavior but we need the global extremum here and we just
regard (1, 2, 0) as the candidates without doing 2nd derivative test.

For boundary extremum, we should have g(x, y, z) = x2 + y2 + z2 = 16.
On the constraint, ∇g 6= 0. Hence we have ∇f = λ∇g, g = 16

2(x − 1) = λ2x, 2(y − 2) = λ2y, 2z = λ2z, x2 + y2 + z2 = 16. Look at
the third equation, if λ = 0, we get (1, 2, 0) which of course is not on the
boundary. Hence λ 6= 0 and z = 0

From the first two equations, x = 1/(1−λ), y = 2/(1−λ). Hence y = 2x.
Then, x2 + y2 + 02 = 16 tells you that x = ±4/

√
5. Hence, we have two

other candidates (4/
√

5, 8/
√

5, 0) and (−4/
√

5,−8/
√

5, 0)

Provided the existence of max/min, we just need to compute the values at
these points. f(1, 2, 0) = 0, 0 < f(4/

√
5, 8/
√

5, 0) < f(−4/
√

5,−8/
√

5, 0).
Hence, 0 is the global minimum and f(−4/

√
5,−8/

√
5, 0) is the global

max.

(d). Let f(x, y) = x+ y−xy. Let D be the region bounded by x = 0, y =
0, x+ 2y = 4. Find the maximum and minimum values of f on D.

Also the region is bounded and closed. There must be max/min.

For interior, ∇f = (1 − y, 1 − x) = 0. We get (1, 1). This is one candi-
date(it’s a saddle actually).

Consider the boundary. We have three pieces. For x = 0, 0 ≤ y ≤ 2. The
function is reduced to 0 + y − 0 = y. Hence on this piece, the smallest
value is obtained at (0, 0) which is 0 and the largest is obtained at (0, 2)
which is 2. For 0 ≤ x ≤ 4, y = 0, the function is reduced to x. Again,
the minimum is 0 at (0, 0) and the maximum is 4 at (4, 0); For the piece
x+2y = 4, 0 ≤ x ≤ 4, the function is reduced to x+(4−x)/2−x(4−x)/2.
You see that the minimum value should be at x = 3/2, y = 5/4 and the
largest value is at (4, 0).

Anyway, combining all these together, we see that (0, 0) is the global
minimum and (4, 0) is the global max.

You can use Lagrange multiplier for each piece which is more complicated
in this problem.

3. (Double integral, iterated integral)

(a). Compute
∫∫
D

√
x3 + 1dA whereD = {(x, y) : 0 ≤ y ≤ 1,

√
y ≤ x ≤ 1}

Writing in iterated integral form:∫ 1

0

∫ 1

√
y

√
x3 + 1dxdy
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That is not suitable for integration. We change the order and have∫ 1

0

∫ x2

0

√
x3 + 1dydx =

∫ 1

0

x2
√
x3 + 1dx =

2

9
(2
√

2− 1)

(b). Compute ∫ 1

0

∫ 1

y2
y(3x2 + 1)1/3dxdy

Change the order:∫ 1

0

∫ √x
0

y(3x2 + 1)1/3dydx =

∫ 1

0

1

2
x(3x2 + 1)1/3dx =

1

16
(44/3 − 1)

(c). Evaluate
∫∫
R

y
x5+1dA where R is the region bounded by y = 0, y =

x2, x = 1

∫ 1

0

∫ x2

0

y

x5 + 1
dydx =

∫ 1

0

x4/2

x5 + 1
dx = (ln 2)/10

4. (Double Integrals in polar coordinates)

(a). Write the following curves and functions in polar coordinates:

• x2 + (y − a)2 = a2

• x3 + xy2 − y = 0

• f(x, y) = 2x2 + y2 − x

The first: r = 2a sin θ. The second is r2 = tan θ(think about why we can
divide cos θ). The third is F (r, θ) = r2 + r2 cos2 θ − r cos θ

(b). Find the volume of the region bounded by z = x2 + y2 and z = y.

The integral is
∫∫
D

(y−x2−y2)dA where the boundary of D is determined
by x2 + y2 = y

From here, you see that polar coordinates are more convenient: The
boundary in polar is r2 = r sin θ or r = sin θ. You see that from θ = 0 to
θ = π, you can trace the boundary once(You set r = 0 and find θ = 0, π).
The region can be written as {0 ≤ θπ, 0 ≤ r ≤ sin θ}. dA = rdrdθ. The
integrand is r sin θ − r2. Hence the integral is∫ π

0

∫ sin θ

0

(r sin θ − r2)rdrdθ =
1

12

∫ π

0

sin4 θdθ
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To evaluate this integral, you recall double angle formula: sin2 θ = (1 −
cos 2θ)/2 and the integral is:

1

48

∫ π

0

(1− 2 cos 2θ + cos2(2θ))dθ =
π

32

where the double angle formula is used again(cos2 2θ = (1 + cos 4θ)/2).

(c). Let R = {(x, y) : (x− 1)2 + y2 ≤ 1, x2 + (y − 1)2 ≤ 1}. Compute the
volume of under f(x, y) = x and above R.

The region can be written in polar as {0 ≤ θ ≤ π/4, 0 ≤ r ≤ 2 sin θ}
together with {π/4 ≤ θ ≤ π/2, 0 ≤ r ≤ 2 cos θ}. The volume

∫∫
D
xdA

then can be written as∫ π/4

0

∫ 2 sin θ

0

r cos θ(rdrdθ) +

∫ π/2

π/4

∫ 2 cos θ

0

r cos θ(rdrdθ)

I think you can finish evaluating the integral.. For the first, use u-sub
u = sin θ. The second piece, use double angle formula again.

(d). Compute
∫ 1

0

∫√1−y2
0

sin(x2 + y2)dxdy

In polar: the region is {0 ≤ θ ≤ π/2, 0 ≤ r ≤ 1}. Hence the integral is∫ π/2

0

∫ 1

0

sin(r2)rdrdθ =
π

4
(1− cos 1)

5. (Triple integrals)

(a). Evaluate
∫∫∫

ex+y+zdV over the region {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤
x, 0 ≤ z ≤ ln y}.

∫ 1

0

∫ x

0

∫ ln y

0

ex+y+zdzdydx =

∫ 1

0

∫ x

0

(y − 1)ex+ydydx

=

∫ 1

0

((y − 1)ex+y − ex+y)|x0dx =

∫ 1

0

[(x− 2)e2x + 2ex]dx = . . .

(b). Evaluate
∫∫∫

D
xydV where D is the region bounded by y = x2, x =

y2, z = 0, z = x+ y

∫ 1

0

∫ √x
x2

∫ x+y

0

xydzdydx =

∫ 1

0

∫ √x
x2

xy(x+ y)dydx

=

∫ 1

0

x2
1

2
(x− x4) +

1

3
x(x3/2 − x6)dx = . . .
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(c). Compute the integral of f(x, y, z) = x over the region 0 ≤ y ≤
1, x, z ≥ 0, x+ z ≤ 2

The region {(x, y, z) : 0 ≤ y ≤ 1, 0 ≤ x ≤ 2, 0 ≤ z ≤ 2− x}.∫ 1

0

∫ 2

0

∫ 2−x

0

xdzdxdy =

∫ 2

0

x(2− x)dx = . . .

(d). A cube has edge length 2 and density equals the square of the distance
from one specific edge. Find the total mass and the center of mass.

M =

∫ 2

0

∫ 2

0

∫ 2

0

(y2 + z2)dxdydz

xc =
1

M

∫ 2

0

∫ 2

0

∫ 2

0

x(y2 + z2)dxdydz

yc =
1

M

∫ 2

0

∫ 2

0

∫ 2

0

y(y2 + z2)dxdydz = zc

6. (Triple integrals in cylindrical/spherical coordinates)

(a). (hw #14)Evaluate
∫∫∫

x2dV over the interior of the cylinder x2+y2 =
1 between z = 0 and z = 5.

Use cylindrical coordinates. x2 = r2 sin2 θ. Region is 0 ≤ z ≤ 5, 0 ≤ θ ≤
2π, 0 ≤ r ≤ 1. dV = rdrdθdz. The integral is∫ 5

0

∫ 2π

0

∫ 1

0

r2 sin2 θrdrdθdz

(b). (hw #19) Evaluate
∫∫∫ √

x2 + y2dV over the interior of x2+y2+z2 =
4

Us spherical coordinates. dV = ρ2 sinφdρdφdθ

∫ 2

0

∫ π

0

∫ 2π

0

√
ρ2 sin2 φρ2 sinφdθdφdρ =

∫ 2

0

∫ π

0

∫ 2π

0

ρ3 sin2 φdθdφdρ

(c). (hw #17) Evaluate
∫∫∫

yzdV over the region in the first octant inside
x2 + y2 − 2x = 0 and under x2 + y2 + z2 = 4.
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Use cylindrical coordinates. r2 − 2r cos θ = 0 or r = 2 cos θ. The second
equation is r2 + z2 = 4. The integral is∫ π/2

0

∫ 2 cos θ

0

∫ √4−r2

0

(r sin θ)z[rdzdrdθ]
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