Review Working sheet 2

1. (Critical points, Taylor expansion, and 2nd derivative test)
(a) Find the Taylor expansion of $f(x, y)=2^{x-y^{2}}$ at $(1,1)$ up to second order.
(b) Find all critical points and apply the 2nd derivative test for the following:

$$
f(x, y)=8 x^{4}+y^{4}-x y^{2}
$$

2. (Optimization with constraint, Lagrange multiplier)
(a). Find all the points on the surface $x y-z^{2}+1=0$ that are closest to the origin.
(b). Find the minimum of $f(x, y, z)=x y z$ under the constraint $x^{2}+2 y^{2}+$ $z^{2}=1$.
(c). $f(x, y, z)=(x-1)^{2}+(y-2)^{2}+z^{2}$. Find the largest and smallest value of f inside $x^{2}+y^{2}+z^{2} \leq 16$.
(d). Let $f(x, y)=x+y-x y$. Let D be the region bounded by $x=0, y=$ $0, x+2 y=4$. Find the maximum and minimum value of f on D.
3. (Double integral, iterated integral)
(a). Compute $\iint_{D} \sqrt{x^{3}+1} d A$ where $D=\{(x, y): 0 \leq y \leq 1, \sqrt{y} \leq x \leq 1\}$ (b). Compute

$$
\int_{0}^{1} \int_{y^{2}}^{1} y\left(3 x^{2}+1\right)^{1 / 3} d x d y
$$

(c). Evaluate $\iint_{R} \frac{y}{x^{5}+1} d A$ where R is the region bounded by $y=0, y=$ $x^{2}, x=1$
4. (Double Integrals in polar coordinates)
(a). Write the following curves and functions in polar coordinates:

- $x^{2}+(y-a)^{2}=a^{2}$
- $x^{3}+x y^{2}-y=0$
- $f(x, y)=2 x^{2}+y^{2}-x$
(b). Find the volume of the region bounded by $z=x^{2}+y^{2}$ and $z=y$.
(c). Let $R=\left\{(x, y):(x-1)^{2}+y^{2} \leq 1, x^{2}+(y-1)^{2} \leq 1\right\}$. Compute the volume of under $f(x, y)=x$ and above R.
(d). Compute $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \sin \left(x^{2}+y^{2}\right) d x d y$

5. (Triple integrals)
(a). Evaluate $\iiint e^{x+y+z} d V$ over the region $\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq$ $x, 0 \leq z \leq \ln y\}$.
(b). Evaluate $\iiint_{D} x y d V$ where D is the region bounded by $y=x^{2}, x=$ $y^{2}, z=0, z=x+y$
(c). Compute the integral of $f(x, y, z)=x$ over the region $0 \leq y \leq$ $1, x, z \geq 0, x+z \leq 2$
(d). A cube has edge length 2 and density equals the square of the distance from one specific edge. Find the total mass and the center of mass.
6. (Triple integrals in cylindrical/spherical coordinates)
(a). (hw \#14)Evaluate $\iiint x^{2} d V$ over the interior of the cylinder $x^{2}+y^{2}=$ 1 between $z=0$ and $z=5$.
(b). (hw \#19) Evaluate $\iiint \sqrt{x^{2}+y^{2}} d V$ over the interior of $x^{2}+y^{2}+z^{2}=$ 4
(c). (hw \#17) Evaluate $\iiint y z d V$ over the region in the first octant inside $x^{2}+y^{2}-2 x=0$ and under $x^{2}+y^{2}+z^{2}=4$.
