Keys-Review Working sheet

1. (vectors. Dot/cross product)

Suppose $A(0,0,1), B(2,1,3), C(-1,-1,0), D(-2,-4,5)$
(a). Compute plane $A B C$
(b). Distance from D to $A B C$
(c). Angle between $\overrightarrow{A B}, \overrightarrow{A C}$
(d). The volume of the parallelepiped that has edges $A B, A C, A D$

Soln. (a). First of all, we have $\overrightarrow{A B}=(2,1,2)$ and $\overrightarrow{A C}=(-1,-1,-1)$. A normal vector could be found as $\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}$:

$$
\vec{n}=\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) \times\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

The point on the plane could be picked as $A(0,0,1)$ and the plane could be computed as

$$
\vec{n} \cdot\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right)=0
$$

or $1 x+0 y-(z-1)=0$ or $x-(z-1)=0$
(b). $\overrightarrow{A D}=(-2,-4,4)$ where A is on the plane. The distance could be computed as

$$
d=\frac{|\vec{n} \cdot \overrightarrow{A D}|}{|\vec{n}|}=\frac{|-2+0-4|}{\sqrt{2}}=3 \sqrt{2}
$$

(c).

$$
\cos \theta=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}||\overrightarrow{A C}|}=\frac{-2-1-2}{\sqrt{4+1+4} \sqrt{1+1+1}}=\frac{-5}{3 \sqrt{3}}
$$

Hence $\theta=\arccos (-5 /(3 \sqrt{3}))=\pi-\arccos (5 /(3 \sqrt{3}))$
(d).

$$
V=|(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot \overrightarrow{A D}|=6
$$

2. (Parametrized curve; This is from the exam of last year I was TAing for.)

Consider

$$
\vec{x}(t)=\left(\begin{array}{c}
t \sin t+\cos t \\
t \cos t-\sin t \\
t^{2}
\end{array}\right), t \geq 0
$$

Compute the unit tangent, unit normal and curvature. Also compute the arclength from $t=1$ to $t=2$
Soln. First of all, we can compute that

$$
\vec{x}^{\prime}(t)=\left(\begin{array}{c}
t \cos t \\
-t \sin t \\
2 t
\end{array}\right)=t\left(\begin{array}{c}
\cos t \\
-\sin t \\
2
\end{array}\right)
$$

Then, we compute that $\left|\vec{x}^{\prime}(t)\right|=t \sqrt{\cos ^{2} t+\sin ^{2} t+4}=\sqrt{5} t$.
The unit tangent is

$$
\vec{T}(t)=\frac{\vec{x}^{\prime}(t)}{\left|\vec{x}^{\prime}(t)\right|}=\frac{1}{\sqrt{5}}\left(\begin{array}{c}
\cos t \\
-\sin t \\
2
\end{array}\right)
$$

The curvature vector is

$$
\vec{\kappa}(t)=\frac{d}{d s} \vec{T}=\frac{1}{\left|\vec{x}^{\prime}(t)\right|} \vec{T}^{\prime}(t)=\frac{1}{\sqrt{5} t} \frac{1}{\sqrt{5}}\left(\begin{array}{c}
-\sin t \\
-\cos t \\
0
\end{array}\right)=\frac{1}{5 t}\left(\begin{array}{c}
-\sin t \\
-\cos t \\
0
\end{array}\right)
$$

The curvature is

$$
\kappa=|\vec{\kappa}|=\frac{1}{5 t}\left|\left(\begin{array}{c}
-\sin t \\
-\cos t \\
0
\end{array}\right)\right|=\frac{1}{5 t}
$$

The unit normal could be computed as $\vec{N}=\vec{\kappa} / \kappa$. Or, we simply take the direction of $(-\sin t,-\cos t, 0)$, which is

$$
\vec{N}=\left(\begin{array}{c}
-\sin t \\
-\cos t \\
0
\end{array}\right)
$$

Finally, the arc length is

$$
L=\int_{1}^{2}\left|\vec{x}^{\prime}(t)\right| d t=\left.\sqrt{5} \frac{1}{2} t^{2}\right|_{1} ^{2}=\frac{\sqrt{5}}{2}(4-1)
$$

A final comment: if we are not asked about the normal, we can compute the curvature as $\kappa=\frac{1}{\left|\vec{x}^{\prime}(t)\right|^{3}}\left\|\vec{x}^{\prime}(t) \times \vec{x}^{\prime \prime}(t)\right\|$.
3. (Quadratic form)

$$
Q(x, y)=x^{2}+6 x y+8 y^{2}
$$

Which kind of form is this?
Soln. Since $A=1, B=6, C=8$ and we have $4 A C-B^{2}=32-36<0$, it's indefinite.

Another way is to complete the square:
$Q=\left(x^{2}+6 x y+9 y^{2}-9 y^{2}\right)+8 y^{2}=(x+3 y)^{2}-9 y^{2}+8 y^{2}=(x+3 y)^{2}-y^{2}=u^{2}-v^{2}$
4. (Polar coordinates)
(a). If $x<0, y>0$, find a formula for the polar angle θ. Use your formula to find r, θ for point $(-1, \sqrt{3})$
(b). Sketch the surface $x^{2}+y^{2}-z^{2}=0$

Soln. (a). Notice that $\tan \theta=y / x<0$ and $\arctan (y / x) \in(-\pi / 2,0)$. To get the correct angle, we fix it as:

$$
\theta=\arctan \left(\frac{y}{x}\right)+\pi
$$

For $(-1, \sqrt{3})$, we have $\theta=\arctan (-\sqrt{3})+\pi=2 \pi / 3 . r=\sqrt{1^{2}+3}=2$ (b). We can solve the surface as $z=r$ and $z=-r$. You plot the graph in $z x$ plane first and rotate about z-axis. You'll get a cone.(figure omitted.)
5. (This is also an old exam; the purpose is to test partial derivatives. You can choose to use linear approximation)
Compute the limit

$$
\lim _{h \rightarrow 0} \frac{f(x-h, y+h)-f(x, y)}{h}
$$

Soln. I choose to use linear approximation

$$
\begin{aligned}
f(x-h, y+h)=f(x, y)+ & f_{x}(x, y)[x-h-x]+f_{y}[y+h-y]+O\left(h^{2}\right) \\
& =f(x, y)-h f_{x}(x, y)+h f_{y}(x, y)+O\left(h^{2}\right)
\end{aligned}
$$

Plugging in, we have

$$
\lim _{h \rightarrow 0}\left(-f_{x}(x, y)+f_{y}(x, y)+O(h)\right)=-f_{x}(x, y)+f_{y}(x, y)
$$

6. (linear approximation, tangent of the graph, tangent of the level set)
(a). Consider

$$
f(x, y)=x e^{\sin y}
$$

- Compute the linear approximation at $(1,0)$ and compute the value $1.02 * e^{\sin (0.01)}$ approximately;
- compute the tangent plane of the graph at $(1,0)$;
- compute the tangent line of the level set that passes through $(1,0)$.

Soln. (first) The linear approximation is just the first several terms in the Taylor expansion:

$$
f(x, y) \approx f(1,0)+f_{x}(1,0)(x-1)+f_{y}(1,0) y
$$

We compute that $f(1,0)=1 e^{0}=1, f_{x}=e^{\sin y}$ and $f_{x}(1,0)=1 . f_{y}=$ $x e^{\sin y} \cos y$ and $f_{y}(1,0)=1$.

The linear approximation is thus

$$
f(x, y) \approx 1+(x-1)+y=x+y
$$

We estimate that $1.02 * e^{\sin 0.01}=f(1.02,0.01) \approx 1.02+0.01=1.03$ by linear approximation.
(second) The tangent plane of the graph is just the graph of the linear approximation of f. It's

$$
z=f(1,0)+f_{x}(1,0)(x-1)+f_{y}(1,0) y=1+(x-1)+y=x+y
$$

(third). The tangent line of the level set can be computed in two ways.
The first way is to use linear approximation. The equation for the level set is $f(x, y)-f(1,0)=0$. Taking the linear approximation, we have

$$
f_{x}(1,0)(x-1)+f_{y}(1,0)(y-0)=0 \Rightarrow x-1+y=0
$$

The second way is to use the geometric meaning of gradient. The gradient is a normal vector of the level set and we see that $\nabla f(1,0)=$ $\left(f_{x}(1,0), f_{y}(1,0)\right)=(1,1)$. The tangent line is

$$
\nabla f \cdot\left(\binom{x}{y}-\binom{1}{0}\right)=0
$$

or $(x-1)+y=0$
(b). Consider

$$
f(x, y, z)=x y^{2} z+(x+4 y+2 z)^{3}
$$

- Compute the linear approximation at $(2,-1,1)$;
- Compute the tangent hyperplane of the graph at $(2,-1,1)$;
- compute the tangent plane of the level set that passes through $(2,-1,1)$.

Soln. (first). The linear approximation is $f(x, y, z) \approx f(2,-1,1)+$ $f_{x}(2,-1,1)(x-2)+f_{y}(2,-1,1)(y+1)+f_{z}(2,-1,1)(z-1)$.
We compute that $f(2,-1,1)=2$ and $f_{x}(2,-1,1)=1, f_{y}(2,-1,1)=$ $-4, f_{z}(2,-1,1)=2$. The linear approximation is

$$
f(x, y, z) \approx 2+1(x-2)-4(y+1)+2(z-1)
$$

(2nd) The tangent hyperplane of the graph is

$$
\begin{array}{r}
w=f(2,-1,1)+f_{x}(2,-1,1)(x-2)+f_{y}(2,-1,1)(y+1)+f_{z}(2,-1,1)(z-1) \\
=2+1(x-2)-4(y+1)+2(z-1)
\end{array}
$$

(3rd). The tangent of the level set can be computed using two ways as well. The first way is to use linear approximation of the level set equation $f(x, y, z)-f(2,-1,1)=0$ and get
$f_{x}(2,-1,1)(x-2)+f_{y}(2,-1,1)(y+1)+f_{z}(2,-1,1)(z-1)=0 \Rightarrow 1(x-2)-4(y+1)+2(z-1)=0$

The second way is to use the geometric meaning of gradient as well(gradient is a normal of level set).

$$
\nabla f(2,-1,1) \cdot\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)\right)=0
$$

or $1(x-2)-4(y+1)+2(z-1)=0$.
7. (Gradient; revised from homework)

Consider $f(x, y)=x^{2}+y^{2}+z$.
(a). Compute ∇f.
(b). Find the fastest increasing direction and fastest decreasing direction at $(0,0,1)$.
(c). Let's say the level set that passes through $(0,0,1)$ is C. Find a point on C where the normal of the level set is parallel with $(1,1,1)$.
Soln. (a). It's easy to see that

$$
\nabla f=\left(\begin{array}{c}
f_{x} \\
f_{y} \\
f_{z}
\end{array}\right)=\left(\begin{array}{c}
2 x \\
2 y \\
1
\end{array}\right)
$$

(b). Since the gradient points the fastest increasing direction, we see that

$$
\hat{v}=\frac{\nabla f}{|\nabla f|}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

is the fastest increasing direction. The fastest decreasing direction is $-\hat{v}=$ $(0,0,-1)$.
(c). The level set is $f(x, y, z)=C$ and we can compute that $C=0^{2}+$ $0^{2}+1=1$. Thus the level set is $x^{2}+y^{2}+z=1$.

Then, by the formula of ∇f, we hope $(2 x, 2 y, 1) \|(1,1,1)$. That means we should have $(2 x, 2 y, 1)=\lambda(1,1,1)$. Thus $x=1 / 2, y=1 / 2$. However, for the point, we need z to make $(1 / 2,1 / 2, z)$. To find z, we use the level set equation $x^{2}+y^{2}+z=1$ and find that $z=1-1 / 4-1 / 4=1 / 2$
8. (Chain rule)
(a). Let $f(x, y)=\cos (x y)+y \cos \left(x^{2}\right)$. Suppose a bug is crawling along a curve $\vec{x}(t)=\left(t^{2}, t\right)$. The bug then feels the f as $f(x(t), y(t))$. Compute the changing rate that the bug feels: $d f / d t$.
(b). Let $f(x, y)=\cos (x y)+y \cos \left(x^{2}\right)$ and $x=s+t, y=s / t . z=g(s, t)=$ $f(x(s, t), y(s, t))$. Compute $\partial z / \partial s=g_{s}$ and $\partial z / \partial t=g_{t}$.
$\left(c^{*}\right)$. Consider the Cartesian point $(1,1)$. If you know $\partial f / \partial r=1$ and $\partial f / \partial \theta=2$ when regarding f as a function of r, θ, could you compute $\partial f / \partial x$ when you regard f as a function of x, y ?
Soln. (a). First of all, we notice $x(t)=t^{2}, y(t)=t$. By the formula of chain rule, we have

$$
\frac{d f}{d t}=f_{x} x^{\prime}(t)+f_{y} y^{\prime}(t)=\left[-y \sin (x y)-2 x y \sin x^{2}\right] 2 t+\left[-x \sin (x y)+\cos \left(x^{2}\right)\right] 1
$$

Plugging in $x=t^{2}, y=t$, we have

$$
\frac{d f}{d t}=\left[-t \sin \left(t^{3}\right)-2 t^{3} \sin t^{4}\right] 2 t+\left[-t^{2} \sin \left(t^{3}\right)+\cos \left(t^{4}\right)\right] 1
$$

(b). By the formula, we have $g_{s}=f_{x} \frac{\partial x}{\partial s}+f_{y} \frac{\partial y}{\partial s}$ or

$$
g_{s}=\left[-y \sin (x y)-2 x y \sin x^{2}\right] 1+\left[-x \sin (x y)+\cos \left(x^{2}\right)\right](1 / t)
$$

or

$$
g_{s}=\left[-(s / t) \sin ((s+t) s / t)-2(s+t) s / t \sin (s+t)^{2}\right] 1+\left[-(s+t) \sin ((s+t) s / t)+\cos \left((s+t)^{2}\right)\right](1 / t)
$$

Similarly, we have

$$
g_{t}=\left[-y \sin (x y)-2 x y \sin x^{2}\right] 1+\left[-x \sin (x y)+\cos \left(x^{2}\right)\right]\left(-s / t^{2}\right)
$$

or
$\left[-(s / t) \sin ((s+t) s / t)-2(s+t) s / t \sin (s+t)^{2}\right] 1+\left[-(s+t) \sin ((s+t) s / t)+\cos \left((s+t)^{2}\right)\right]\left(-s / t^{2}\right)$
(c). Let's consider $f(x, y)=f(x(r, \theta), y(r, \theta))$, where $x=r \cos \theta, y=$ $r \sin \theta$. We then have

$$
f_{r}=f_{x} \frac{\partial x}{\partial r}+f_{y} \frac{\partial y}{\partial r}=\cos \theta f_{x}+\sin \theta f_{y}
$$

Similarly, we have

$$
f_{\theta}=f_{x}(-r \sin \theta)+f_{y}(r \cos \theta)
$$

At the point, we have $r=\sqrt{2}, \theta=\pi / 4$. Thus,

$$
\begin{gathered}
1=f_{r}=\frac{\sqrt{2}}{2} f_{x}+\frac{\sqrt{2}}{2} f_{y} \\
2=f_{\theta}=-f_{x}+f_{y}
\end{gathered}
$$

Then, just solve the system of equations.
9. (Implicit function)

Compute $\partial z / \partial x$ at $(1,-1,1)$ if $\ln (2 x+y z)-x y-z x=0$.
Soln. Let's re-derive the formula again:

$$
F(x, y, z(x, y))=C
$$

Taking partial derivative on x on both sides(that means we are fixing y), we have

$$
F_{x}+F_{z} \frac{\partial z}{\partial x}=0 \Rightarrow \frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}
$$

We compute that

$$
F_{z}=\frac{1}{2 x+y z} y-x=\frac{1}{2-1} *(-1)-1=-2 \neq 0
$$

The function exists locally around $(1,-1,1)$.
Then,

$$
F_{x}=\frac{2}{2 x+y z}-y-z=\frac{2}{1}+1-1=2
$$

The partial derivative is $-(2) /(-2)=1$.
10. (Finding function from its partial derivatives; higher order derivatives)

Suppose your region is a ball. Inside this ball, you have

$$
\begin{gathered}
P(x, y)=\frac{2 x}{x^{2}+1}+2 x y^{3}+y \cos (x y) \\
Q(x, y)=3 x^{2} y^{2}+x \cos (x y)+e^{y}
\end{gathered}
$$

Is there a function f so that $f_{x}=P$ and $f_{y}=Q$? If yes, find all such functions and compute $f_{x y}, f_{y y}$.

Soln. We check if $P_{y}=Q_{x}$ holds or not.

$$
P_{y}=0+6 x y^{2}+\cos (x y)-x y \sin (x y)
$$

and

$$
Q_{x}=6 x y^{2}+\cos (x y)-x y \sin (x y)+0
$$

They are equal. The domain doesn't have holes inside and there must be such functions.

$$
f(x, y)=\int P d x=\ln \left(x^{2}+1\right)+x^{2} y^{3}+\sin (x y)+g(y)
$$

Then, $Q=f_{y}$ means

$$
3 x^{2} y^{2}+x \cos (x y)+e^{y}=3 x^{2} y^{2}+x \cos (x y)+g^{\prime}(y)
$$

or $g(y)=\int e^{y} d y=e^{y}+C$. In other words, we have

$$
f(x, y)=\ln \left(x^{2}+1\right)+x^{2} y^{3}+\sin (x y)+e^{y}+C
$$

