Review Working sheet

1. (vectors. Dot/cross product)

Suppose $A(0,0,1), B(2,1,3), C(-1,-1,0), D(-2,-4,5)$
(a). Compute plane $A B C$
(b). Distance from D to $A B C$
(c). Angle between $\overrightarrow{A B}, \overrightarrow{A C}$
(d). The volume of the parallelepiped that has edges $A B, A C, A D$
2. (Parametrized curve; This is from the exam of last year I was TAing for.)

Consider

$$
\vec{x}(t)=\left(\begin{array}{c}
t \sin t+\cos t \\
t \cos t-\sin t \\
t^{2}
\end{array}\right)
$$

Compute the unit tangent, unit normal and curvature. Also compute the arclength from $t=1$ to $t=2$
3. (Quadratic form)

$$
Q(x, y)=x^{2}+6 x y+8 y^{2}
$$

Which kind of form is this?
4. (Polar coordinates)
(a). If $x<0, y>0$, find a formula for the polar angle θ. Use your formula to find r, θ for point $(-1, \sqrt{3})$
(b). Sketch the surface $x^{2}+y^{2}-z^{2}=0$
5. (This is also an old exam; the purpose is to test partial derivatives. You can choose to use linear approximation)
Compute the limit

$$
\lim _{h \rightarrow 0} \frac{f(x-h, y+h)-f(x, y)}{h}
$$

6. (linear approximation, tangent of the graph, tangent of the level set)
(a). Consider

$$
f(x, y)=x e^{\sin y}
$$

- Compute the linear approximation at $(1,0)$ and compute the value $1.02 * e^{\sin (0.01)}$ approximately;
- compute the tangent plane of the graph at $(1,0)$;
- compute the tangent line of the level set that passes through $(1,0)$.
(b). Consider

$$
f(x, y, z)=x y^{2} z+(x+4 y+2 z)^{3}
$$

- Compute the linear approximation at $(2,-1,1)$;
- Compute the tangent hyperplane of the graph at $(2,-1,1)$;
- compute the tangent plane of the level set that passes through $(2,-1,1)$.

7. (Gradient; revised from homework)

Consider $f(x, y)=x^{2}+y^{2}+z$.
(a). Compute ∇f.
(b). Find the fastest increasing direction and fastest decreasing direction at $(0,0,1)$.
(c). Let's say the level set that passes through $(0,0,1)$ is C. Find a point on C where the normal of the level set is parallel with $(1,1,1)$.
8. (Chain rule)
(a). Let $f(x, y)=\cos (x y)+y \cos \left(x^{2}\right)$. Suppose a bug is crawling along a curve $\vec{x}(t)=\left(t^{2}, t\right)$. The bug then feels the f as $f(x(t), y(t))$. Compute the changing rate that the bug feels: $d f / d t$.
(b). Let $f(x, y)=\cos (x y)+y \cos \left(x^{2}\right)$ and $x=s+t, y=s / t . z=g(s, t)=$ $f(x(s, t), y(s, t))$. Compute $\partial z / \partial s=g_{s}$ and $\partial z / \partial t=g_{t}$.
$\left(c^{*}\right)$. Consider the Cartesian point $(1,1)$. If you know $\partial f / \partial r=1$ and $\partial f / \partial \theta=2$ when regarding f as a function of r, θ, could you compute $\partial f / \partial x$ when you regard f as a function of x, y ?
9. (Implicit function)

Compute $\partial z / \partial x$ at $(1,-1,1)$ if $\ln (2 x+y z)-x y-z x=0$.
10. (Finding function from its partial derivatives; higher order derivatives)

Suppose your region is a ball. Inside this ball, you have

$$
\begin{gathered}
P(x, y)=\frac{2 x}{x^{2}+1}+2 x y^{3}+y \cos (x y) \\
Q(x, y)=3 x^{2} y^{2}+x \cos (x y)+e^{y}
\end{gathered}
$$

Is there a function f so that $f_{x}=P$ and $f_{y}=Q$? If yes, find all such functions and compute $f_{x y}, f_{y y}$

