Exercises on Nov. 11th

1. Find the largest surface area of a rectangular box without top, provided that the diagonal is A
Assume the length, width, height are x, y, z respectively. The surface area is $f(x, y, z)=x y+2 x z+2 y z$. The diagonal is $\sqrt{x^{2}+y^{2}+z^{2}}=A$ and hence $g(x, y, z)=x^{2}+y^{2}+z^{2}=A^{2}$
Clearly, $\nabla g \neq 0$ and thus $f_{x}=\lambda g_{x}, f_{y}=\lambda g_{y}, f_{z}=\lambda g_{z}, g=A^{2}$.
$y+2 z=\lambda 2 x, x+2 z=\lambda 2 y, 2 x+2 y=\lambda 2 z, x^{2}+y^{2}+z^{2}=A^{2}$
From the first equation, we solve $\lambda=(y+2 z) /(2 x)$ (clearly, they are all nonzero). Plug this into the second equation, we get $y^{2}+2 y z=x^{2}+2 x z$ or $y^{2}-x^{2}+2 y z-2 x z=0$ or $(y-x)(y+x+2 z)=0$. Hence, $y=x$. This way may be hard for some people. Then, you can solve $2 z=2 \lambda x-y$ and plug into the second and you have $x=y$ as well.
Now, using the same trick, you have $y z-2 x^{2}=2 x y-2 z^{2}$. Using the condition that $x=y$, you have $2 z^{2}+x z-4 x^{2}=0$. Using the quadratic formula, $z=\left(-x+\sqrt{x^{2}+32 x^{2}}\right) / 4=(\sqrt{33}-1) x / 4$.
The constraint tells us that $x^{2}+x^{2}+\frac{34-2 \sqrt{33}}{16} x^{2}=A^{2}$. Now, you can solve $x=y=4 A / \sqrt{66-2 \sqrt{34}}$. Then, you can have z. The final answer can be obtained by plugging in.
I didn't notice the computation is so tricky for you...
2. The volume bounded by $y^{2}=4 x, 2 x+y=4, y=0, z=y, 2 z=y$.

The intersection between $y^{2}=4 x$ and $2 x+y=4$ can be obtained by solving $y^{2}=2(4-y)$. Then, $(1,2)$ is the intersection. The integral is

$$
\int_{0}^{2} \int_{y^{2} / 4}^{2-y / 2}(y-y / 2) d x d y=\int_{0}^{2} \frac{y}{2}\left(2-y / 2-y^{2} / 4\right) d y=5 / 6
$$

3. R is the region bounded by $x=y^{2}, y=1, x+y-z=0$ in first octant. Density is $\mu(x, y, z)=x$. Find the total mass and average of μ.
The region is $0 \leq y \leq 1,0 \leq x \leq y^{2}, 0 \leq z \leq x+y$. The total mass is

$$
M=\iiint \mu d V=\int_{0}^{1} \int_{0}^{y^{2}} \int_{0}^{x+y} x d z d x d y=\int_{0}^{1}\left(\frac{1}{3} y^{6}+\frac{1}{2} y^{5}\right) d y=\frac{1}{21}+\frac{1}{12}=11 / 84
$$

The total volume is

$$
V=\int_{0}^{1} \int_{0}^{y^{2}} \int_{0}^{x+y} d z d x d y=\int_{0}^{1}\left(y^{4} / 2+y^{3}\right) d y=1 / 10+1 / 4
$$

and the average is $(11 / 84) /(7 / 20)$
4. The region is $x^{2}+y^{2} \geq 1, x^{2}+y^{2} \leq 4,|z| \leq 1, x \geq 0$. The density is $\mu=x^{2}+y^{2}+z^{2}$. Find the total mass.
Use cylindrical: the region is $1 \leq r \leq 2,-\pi / 2 \leq \theta \leq \pi / 2,-1 \leq z \leq 1$. $\mu=r^{2}+z^{2}$. The total mass is

$$
\int_{1}^{2} \int_{-\pi / 2}^{\pi / 2} \int_{-1}^{1}\left(r^{2}+z^{2}\right) r d z d \theta d r=\pi \int_{1}^{2}\left(2 r^{3}+2 r / 3\right) d r=\pi(15 / 2+1)
$$

5. Find the center of mass of the region $x^{2}+y^{2}+z^{2} \leq 4$ and above $x y$ plane with density $\mu=\sqrt{x^{2}+y^{2}}$.
By symmetry, the center of mass must be on z axis. Hence $x_{c}=0, y_{c}=0$. Now, let's compute

$$
z_{c}=\iiint z \mu d V / \iiint \mu d V
$$

Use spherical. The region is $0 \leq \rho \leq 2,0 \leq \phi \leq \pi / 2,0 \leq \theta<2 \pi$. The density is $\mu=\rho \sin \phi$ and $z=\rho \cos \phi$ in spherical. (You can plug in $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta)$. Hence the integral is

$$
z_{c}=\frac{\int_{0}^{2} \int_{0}^{\pi / 2} \int_{0}^{2 \pi}(\rho \cos \phi)(\rho \sin \phi) \rho^{2} \sin \phi d \theta d \phi d \rho}{\int_{0}^{2} \int_{0}^{\pi / 2} \int_{0}^{2 \pi}(\rho \sin \phi) \rho^{2} \sin \phi d \theta d \phi d \rho}
$$

Numerator is

$$
2 \pi \int_{0}^{2} \int_{0}^{\pi / 2} \cos \phi \sin ^{2} \phi \rho^{4} d \phi d \rho=\frac{64 \pi}{5} \int_{0}^{\pi / 2} \sin ^{2} \phi \cos \phi d \phi=\frac{64 \pi}{15}
$$

Notice that $u=\sin \theta$
For the denominator,

$$
2 \pi \int_{0}^{2} \int_{0}^{\pi / 2} \rho^{3} \sin ^{2} \phi d \phi d \rho=8 \pi \int_{0}^{\pi / 2} \sin ^{2} \phi d \phi=2 \pi^{2}
$$

where $\sin ^{2} \phi=(1-\cos (2 \phi)) / 2$. Taking the ratio, you get the answer.

