Exercise on September 16

Given

$$
\vec{x}(t)=\left(\begin{array}{c}
t \\
\frac{4}{3} t^{3 / 2} \\
\frac{1}{2} t^{2}
\end{array}\right)
$$

Compute the arc length from $t=0$ to $t=1$.
Soln:
First of all, we have

$$
\left|\vec{x}^{\prime}(t)\right|=\sqrt{1+4 t+t^{2}}=\sqrt{(t+2)^{2}-3}
$$

where we have completed the square $t^{2}+4 t+1=t^{2}+4 t+2^{2}-2^{2}+1=(t+2)^{2}-3$.
The arc length is

$$
L=\int_{0}^{1} \sqrt{(t+2)^{2}-3} d t=\int_{2}^{3} \sqrt{u^{2}-3} d u
$$

where u-sub $u=t+2$ has been used.
Now, to evaluate $\int \sqrt{x^{2}-a^{2}} d x$ we do trig $\operatorname{sub} x=a \sec \theta$. In our case, we do $u=\sqrt{3} \sec \theta$ and $d u=\sqrt{3} \sec \theta \tan \theta d \theta$. The arc length is therefore reduced to

$$
\int_{\sqrt{3} \sec \theta=2}^{\sqrt{3} \sec \theta=3} \sqrt{3 \sec ^{2} \theta-3} \sqrt{3} \sec \theta \tan \theta d \theta=3 \int_{\sqrt{3} \sec \theta=2}^{\sqrt{3} \sec \theta=3} \sec \theta \tan ^{2} \theta d \theta
$$

By the formula of integration by parts $\int u d v=u v-\int v d u$:

$$
I=\int \sec \theta \tan ^{2} \theta d \theta=\int \tan \theta * d(\sec \theta)=\tan \theta \sec \theta-\int \sec \theta d(\tan \theta)
$$

where $v=\sec \theta$ and $u=\tan \theta$. The right hand side is

$$
\begin{align*}
\tan \theta \sec \theta-\int \sec ^{3} \theta d \theta=\tan \theta \sec \theta-\int & \sec \theta\left(\tan ^{2} \theta+1\right) d \theta \\
& =\tan \theta \sec \theta-I-\int \sec \theta d \theta \tag{1}
\end{align*}
$$

In other words, we have

$$
2 I=\tan \theta \sec \theta-\int \sec \theta d \theta=\tan \theta \sec \theta-\ln |\sec \theta+\tan \theta|+C
$$

Since $\sec \theta=u / \sqrt{3}$, we have $\tan \theta=\sqrt{u^{2}-3} / \sqrt{3}$. Therefore, we actually have

$$
3 \frac{1}{2}[\tan \theta \sec \theta-\ln |\sec \theta+\tan \theta|]\left|\left.\right|_{\sqrt{3} \sec \theta=3} ^{\sqrt{3} \sec \theta=2}=\frac{3}{2}\left[\frac{u \sqrt{u^{2}-3}}{3}-\ln \left|\frac{u}{\sqrt{3}}+\frac{\sqrt{u^{2}-3}}{\sqrt{3}}\right|\right]\right|_{u=2}^{u=3}
$$

What I get is $\frac{3}{2} \sqrt{6}-1-\frac{3}{2} \ln (1+\sqrt{6} / 3)$

