Exercise on September 16

Given

$$\vec{x}(t) = \left(\begin{array}{c} t\\ \frac{4}{3}t^{3/2}\\ \frac{1}{2}t^2 \end{array}\right)$$

Compute the arc length from t = 0 to t = 1.

Soln:

First of all, we have

$$|\vec{x}'(t)| = \sqrt{1 + 4t + t^2} = \sqrt{(t+2)^2 - 3}$$

where we have completed the square $t^2+4t+1=t^2+4t+2^2-2^2+1=(t+2)^2-3$. The arc length is

$$L = \int_0^1 \sqrt{(t+2)^2 - 3} dt = \int_2^3 \sqrt{u^2 - 3} du$$

where u-sub u = t + 2 has been used.

Now, to evaluate $\int \sqrt{x^2 - a^2} dx$ we do trig sub $x = a \sec \theta$. In our case, we do $u = \sqrt{3} \sec \theta$ and $du = \sqrt{3} \sec \theta \tan \theta d\theta$. The arc length is therefore reduced to

$$\int_{\sqrt{3}\sec\theta=2}^{\sqrt{3}\sec\theta=3} \sqrt{3\sec^2\theta-3}\sqrt{3}\sec\theta\tan\theta d\theta = 3\int_{\sqrt{3}\sec\theta=2}^{\sqrt{3}\sec\theta=3} \sec\theta\tan^2\theta d\theta$$

By the formula of integration by parts $\int u dv = uv - \int v du$:

$$I = \int \sec \theta \tan^2 \theta d\theta = \int \tan \theta * d(\sec \theta) = \tan \theta \sec \theta - \int \sec \theta d(\tan \theta)$$

where $v = \sec \theta$ and $u = \tan \theta$. The right hand side is

$$\tan\theta \sec\theta - \int \sec^3\theta d\theta = \tan\theta \sec\theta - \int \sec\theta (\tan^2\theta + 1) d\theta$$
$$= \tan\theta \sec\theta - I - \int \sec\theta d\theta \quad (1)$$

In other words, we have

$$2I = \tan \theta \sec \theta - \int \sec \theta d\theta = \tan \theta \sec \theta - \ln|\sec \theta + \tan \theta| + C$$

Since $\sec \theta = u/\sqrt{3}$, we have $\tan \theta = \sqrt{u^2 - 3}/\sqrt{3}$. Therefore, we actually have

$$3\frac{1}{2} \Big[\tan\theta \sec\theta - \ln|\sec\theta + \tan\theta| \Big] |_{\sqrt{3}\sec\theta = 2}^{\sqrt{3}\sec\theta = 3} = \frac{3}{2} \Big[\frac{u\sqrt{u^2 - 3}}{3} - \ln|\frac{u}{\sqrt{3}} + \frac{\sqrt{u^2 - 3}}{\sqrt{3}}| \Big] |_{u = 2}^{u = 3}$$

What I get is $\frac{3}{2}\sqrt{6} - 1 - \frac{3}{2}\ln(1 + \sqrt{6}/3)$