
Summary for part 3

The definitions of double and triple integrals: limits of the correspond-
ing Riemann sums. Fubini says they are equal to iterated integrals

1 Double integrals
˜
D f(x, y)dA. Several things:

• You should be able to change the order of integration

• Area element in polar coordinates (r, θ) : x = r cos θ, y = r sin θ is
dA = rdrdθ while in Cartesian dA = dxdy

• The volume of a region

V =

˚
R
dxdydz =

¨
D
height dA

2 Volume Integrals
˝

R fdV . Several things:

• Change order of integration if necessary

• Cartesian dV = dxdydz

• Cylindrical (r, θ, z) : x = r cos θ, y = r sin θ, z = z. The volume ele-
ment is dV = rdrdθdz

• Spherical (ρ, φ, θ) : x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ. The
volume element is dV = ρ2 sinφdρdφdθ

• Total mass
˝

V µdV ; Center of mass; etc
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Vector field–It’s just a vector-valued function in R2 or R3.(You asso-
ciate a vector for each point)

3 Line integrals

Have covered three types of line integrals(there are other types)
A. Line integral of a scalar function

´
C f(x, y)ds

B. Line integral of a vector field
´
C
~F · d~x

C. Flux integral
´
C ~v · ~Nds ~N is the outer unit normal vector.

For 2 dimensions:

d~x = ~Tds =

(
dx
dy

)
~Nds =

(
dy
−dx

)
ds = |d~x| =

√
dx2 + dy2

The second relation is true only if the angle is 90 clockwisely from ~T to ~N ,
which is usually the case when we compute flux.

For 3 dimensions, ~x = (x, y, z), you’ll have d~x = (dx, dy, dz). ~F =
(P,Q,R), you’ll have ~F · d~x = Pdx+Qdy +Rdz. The second integral then
becomes

´
C(Pdx+Qdy +Rdz).

3.1 How to compute them generally?

Use parametrization
If C is given by ~x = ~x(t), then

d~x = ~x′(t)dt =

(
x′(t)
y′(t)

)
dt

ds = |d~x| = |~x′(t)|dt =
√

(x′(t))2 + (y′(t))2dt

~Nds =

(
y′(t)
−x′(t)

)
dt

Then,
´
C f(x, y)ds =

´ b
a f(x(t), y(t))|~x′(t)|dt and the second one is´ b

a
~F · ~x′(t)dt

Use the meaning the integrals
´
ds = Length,

˜
dA = Area etc

Application: The average of f on C is
´
C fds/

´
C ds =

´
C fds/Length(C)
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3.2 Fundamental theorem (line integral version)

ˆ
C
∇f · d~x =

ˆ
C
fxdx+ fydy + fzdz =

ˆ
C
df = f(B)− f(A)

This tells us that ˛
C
∇f · d~x = 0

when f is a single-valued smooth function(for example f = θ = arctan(y/x)
is not OK for curve around origin, as θ is not single-valued smooth function).

Here the circle means the integral is on a closed curve.

3.3 Conservative vector field

If the circulation satisfies ˛
C

~F · d~x = 0

for any closed curve C, ~F is called a conservative field and ~F = ∇f for
some scalar function f(called potential).

If ~F is not conservative, then you must use Green′s theorem(2d) or
Stokes Theorem(3d version) to find the circulation.

Criteria for conservative fields:

• (Clairaut) For ~F =

(
P
Q

)
, Qx − Py = 0 is required

• For 3D vector ~F , ∇× ~F = 0 is needed

• Sometimes, you can find f so that ~F = ∇f

Comments:

curl(~v) = ∇× ~v =

∣∣∣∣∣∣
~ex ~ey ~ez
∂x ∂y ∂z
P Q R

∣∣∣∣∣∣ = (Ry −Qz)~ex + (Pz −Rx)~ey + (Qx − Py)~ez

Therfore , the second condition is also Ry = Qz, Pz = Rx, Qx = Py
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3.4 Green’s Theorem

This is the theorem that transforms the line integrals on closed curve
to a double integral over the region inside.

We consider ~v =

(
P
Q

)
• (Curl form) This is about counterclock circulation:

˛
C
~v · d~x =

˛
C
Pdx+Qdy =

¨
R

(Qx − Py)dA =

¨
R
curl(~v)zdA

Notice that

curl(~v) = ∇× ~v =

∣∣∣∣∣∣
~ex ~ey ~ez
∂x ∂y ∂z
P Q 0

∣∣∣∣∣∣ = (Qx − Py)~ez

• (Divergence form) This is about outer flux:

˛
C
~v · ~Nds =

¨
R

(Px +Qy)dA =

¨
R
div(~v)dA

Here div(~v) = ∇ · ~v, the dot product between the operator ∇ and ~v.

Notice the left hand side is
¸
C ~v ·

(
dy
−dx

)
=
¸
C Pdy − Qdx, from

where you can see the two versions are equivalent.

∇·~v is the source or sink of the vector field which balances the flux. ∇·~v > 0,
field is expanding while ∇ · ~v < 0 indicates compressing field.

4 Surface Integrals

There are two types:

¨
S
fdA

flux :

¨
S
~v · ~NdA

dA is called the area element. ~N is the unit outer normal. ~NdA = d~S is the
directed area element.
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4.1 How to compute?

To use parametrization(the surface patch)

~x = ~x(u, v) =

 x(u, v)
y(u, v)
z(u, v)


Then, we have:

~NdA = ~xu × ~xvdudv

~N =
~xu × ~xv
‖~xu × ~xv‖

dA = ‖~xu × ~xv‖dudv

Plugging these back, you get a double integral.
Example: Area element of polar coordinates in xy plane. The position

vector can be parametrized as

~x(r, θ) = r cos θx̂+ r sin θŷ =

 r cos θ
r sin θ

0


Then, dA = ‖~xr × ~xθ‖drdθ = rdrdθ. This is the same as we argued in last
Chapter.

Generally, dA is not rdrdθ in cylindrical coordinates for curved surface.
Above is true only for straight planes. For those surfaces, you must use
‖~xr × ~xθ‖drdθ to get dA

Example: Flux of curl of ~F : This is the key component in Stokes
theorem. Basically, you want to compute¨

S
(∇× ~F ) · ~NdA

Let ω = (1, 2, 3) and ~F = ω × ~x = (2z − 3y, 3x − z, y − 2x). Let S be the
upper hemisphere with radius 2. Compute the flux of curl of ~F on S.

Soln. ∇× ~F = (2, 4, 6) using the formula.(This can be confirmed if you
know the advanced identity ∇× (ω× x) = (∇ · ~x)ω− (ω · ∇)~x = 2ω–This of
course is not expected from you. You can just use the formula to compute
this)

Then parametrize the surface ~x(φ, θ) = (2 sinφ cos θ, 2 sinφ sin θ, 2 cosφ)
for 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π. ~NdA = ~xφ × ~xθdφdθ. Plugging this in and
computing, the answer will be 4π ∗ 6
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4.2 Divergence theorem(Gauss theorem)

This is about the flux on a closed surface:‹
S
~v · ~NdA =

˚
R
div(~v)dV =

˚
R
∇ · ~vdV

This has the same explanation as the divergence form of Green’s theorem.

4.3 Stokes Theorem

This is about the circulation on a closed curve in 3D space. It’s Green’s
theorem in 3D space.

˛
C
~v · d~x =

¨
S
curl(~v) · ~NdA

Here S can be any surface that has the boundary C and curl(~v) = ∇× ~v
The curl is just the cross product between ∇ and ~v
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