(Common mistake in hw: 2 minutes) In hw 10, \#11, The pyramid with vertices $(-1,-1,0),(-1,1,0),(1,-1,0),(1,1,0)$ and $(0,0,2)$. Many people set integral as $\int_{0}^{2} \int_{-1}^{1} \int_{-1}^{1}$. This is wrong since it's rectangular box!
(5 minutes)How to set up one integral for the volume of a region by double integral? The formula:

$$
V=\int_{D} h e i g h t d A
$$

Quiz last week: The volume of the region bounded by $y^{2}=4-x$ and $y=2 z$ in first octant.

The height function at point (x, y) is determined by the second equation. Then,

$$
\text { height }=y / 2-0=y / 2
$$

The region is determined by $y^{2}=4-x$, namely $0 \leq x \leq 4,0 \leq y \leq \sqrt{4-x}$. The integral is

$$
\int_{0}^{4} \int_{0}^{\sqrt{4-x}} \frac{y}{2} d y d x
$$

**
A brief summary of what we have covered in vector calculus.

1. Vector field-It's just a vector-valued function in R^{2} or R^{3}. (You associate a vector for each point)
2. Line integrals Have covered three types of line integrals(there are other types)
A. Line integral of a scalar function $\int_{C} f(x, y) d s$
B. Line integral of a vector field $\int_{C} \vec{F} \cdot d \vec{x}$
C. Flux integral $\int_{C} \vec{v} \cdot \vec{N} d s \vec{N}$ is the outer unit normal vector.

- What do they mean? Given the curve, you divide it into many pieces. For each piece, you compute the arclength $d s$ or the displacement $d \vec{x}$. Then, find a value of the function or the vector field on this piece. Compute the integrand and then add together. As mesh tends to 0 , if you have a limit, that limit is the corresponding line integral.
- How to compute?
-Use parametrization. If C is given by $\vec{x}=\vec{x}(t)$, then $d \vec{x}=\vec{x}^{\prime}(t) d t$ and $d s=|d \vec{x}|=\left|\vec{x}^{\prime}(t)\right| d t$.
Then, $\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t))\left|\vec{x}^{\prime}(t)\right| d t$ and the second one is $\int_{a}^{b} \vec{F} \cdot \vec{x}^{\prime}(t) d t$
-Use the meaning the integrals. $\int d s=$ Length;
$\vec{x}=(x, y, z)$, you'll have $d \vec{x}=(d x, d y, d z) . \vec{F}=(P, Q, R)$, you'll have $\vec{F} \cdot d \vec{x}=P d x+Q d y+R d z$. The second integral then becomes $\int_{C}(P d x+Q d y+R d z)$.
Example: $A(1,2)$ and $B(2,3) . C$ is the line segment connecting them. Let $\vec{F}=\left(x^{2}, x\right)$. Compute

$$
\begin{gathered}
\int_{C} d s=\text { Length of } A B=\sqrt{1+1} \\
\int_{C} \vec{F} \cdot d \vec{x}=\int_{C}\left(x^{2} d x+x d y\right)
\end{gathered}
$$

Use parametrization $\vec{x}=(1,2)+t(1,1)$ to compute the second integral. Notice this is not equal to $\left.\left(x^{3} / 3+x y\right)\right|_{A} ^{B}$. The reason is that when you are integrating on the line, your x and y are changing at the same time.
-Application: The average of f on C is $\int_{C} f d s / \int_{C} d s=\int_{C} f d s / \operatorname{Length}(C)$

- Fundamental theorem (line integral version)

$$
\int_{C} \nabla f \cdot d \vec{x}=\int_{C} f_{x} d x+f_{y} d y+f_{z} d z=\int_{C} d f=f(B)-f(A)
$$

- Conservative vector field If for any closed curve C, you have:

$$
\oint_{C} \vec{F} \cdot d \vec{x}=0
$$

then \vec{F} is called a conservative field and $\vec{F}=\nabla f$ for some scalar function f
Here the circle means the integral is on a closed curve.

More examples and homework problems

