Math234 Quiz 1

1 Version 1

This is the one tested in lecture.

1. (a). Draw two vectors \vec{a}, \vec{b} for which \vec{a} has length 3 and \vec{b} has length 5 and for which $\vec{a} \cdot \vec{b}=-12$.
Solution:

$$
\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta \Rightarrow \cos \theta=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|\|\vec{b}\|}=\frac{-12}{3 * 5}=-\frac{4}{5}
$$

This is between -1 and 0 and therefore the angle is obtuse. One possible drawing is:

(b). The same as (a) except that $\vec{a} \cdot \vec{b}=15$. Solution:

$$
\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta \Rightarrow \cos \theta=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|\|\vec{b}\|}=\frac{15}{3 * 5}=1
$$

The angle between them is 0 . Therefore, one plot would be:

Remark: I didn't go over this exact problem in discussions, but it shouldn't be difficult for you. If it was difficult, you really need to catch up.
2. \vec{b} and \vec{c} have the same sign and therefore we group them together:

$$
\begin{aligned}
&(\vec{a}+(\vec{b}+\vec{c})) \times(-\vec{a}+(\vec{b}+\vec{c})) \\
&=-\vec{a} \times \vec{a}+\vec{a} \times(\vec{b}+\vec{c})-(\vec{b}+\vec{c}) \times \vec{a}+(\vec{b}+\vec{c}) \times(\vec{b}+\vec{c}) \\
&=2 \vec{a} \times(\vec{b}+\vec{c})
\end{aligned}
$$

I think this is simple enough. If you want, you can expand the parenthesis.

2 Version 2

This was not used.

1. Compute $(\vec{i} \times \vec{j}) \times \vec{i}$.

Solution:

$$
=\vec{k} \times \vec{i}=\vec{j}
$$

or

$$
=(\vec{i} \cdot \vec{i}) \vec{j}-(\vec{j} \cdot \vec{i}) \vec{i}=\vec{j}
$$

2. (a). Find a normal vector for E_{1} through $A(0,0,0), C(1,1,0) H(0,1,1)$ Solution: A normal vector can be picked as:

$$
\vec{n}=\overrightarrow{A C} \times \overrightarrow{A H}=<1,1,0>\times<0,1,1>=<1,-1,1>
$$

(b). The normal of another plane E_{2} is $\vec{n}_{2}=<0,-1,2>$. Find the angle between E_{1} and E_{2}.
Solution: Assume the angle between the two planes is θ.

$$
\cos \theta=\left|\frac{\vec{n} \cdot \vec{n}_{2}}{|\vec{n}|\left|\vec{n}_{2}\right|}\right|=\frac{3}{\sqrt{3} \sqrt{5}} \Rightarrow \theta=\arccos \left(\frac{\sqrt{15}}{5}\right)
$$

