Math234 Quiz 7

$z=f(x, y)=\sin x \sin y$.
Find all critical points and classify them.
Soln:

$$
\begin{gathered}
f_{x}=\cos x \sin y=0 \Rightarrow x=\frac{\pi}{2}+m \pi \text { or } y=n \pi \\
f_{y}=\sin x \cos y=0 \Rightarrow x=p \pi \text { or } y=q \pi+\frac{\pi}{2}
\end{gathered}
$$

Above, m, n, p, q are all integers. (Many people got the zeros of $\cos x$ to be $k \pi / 2$, which are not correct since this include the multiple of π where \cos is nonzero.)

These two conditions therefore give the following critical points:

$$
\begin{gathered}
\left(\frac{\pi}{2}+m \pi, q \pi+\frac{\pi}{2}\right) \\
(p \pi, n \pi)
\end{gathered}
$$

To classify them, we need to look at the figure(as required by the problem):

Below, all letters mean some integers.
You can see that points $(p \pi, n \pi)$ are the grid points, so they are saddles.
The centers of positive squares will be maxima. They are $\left(\frac{\pi}{2}+m \pi, q \pi+\frac{\pi}{2}\right)$ with both m and q to be odd or with both of them to be even. To be precise, they are: $\left(\frac{3 \pi}{2}+2 j \pi, \frac{3 \pi}{2}+2 k \pi\right)$ and $\left(\frac{\pi}{2}+2 j \pi, \frac{\pi}{2}+2 k \pi\right)$. At the first group, both $\sin x$ and $\sin y$ are -1 and at the second group, both $\sin x$ and $\sin y$ are 1.

The centers of negative squares will be minima. They are ($\frac{\pi}{2}+m \pi, q \pi+\frac{\pi}{2}$) with one integer to be odd and the other one to be even. To be precise, you can write as: $\left(\frac{\pi}{2}+2 j \pi, \frac{3 \pi}{2}+2 k \pi\right)$ and $\left(\frac{3 \pi}{2}+2 j \pi, \frac{\pi}{2}+2 k \pi\right)$. Here, one sine is 1 and the other sine is -1 .

