Math 222 Quiz 8

March 30, 2011

Your Name:

Your Section:

Instructions: You have 20 minutes to solve the following problems and the total score is 10 points. Bonus problems are tricky.

1. Use the method of undetermined coefficients

$$
\text { a). } y^{\prime \prime}+y=2 x+3 e^{x}(2 \mathrm{pts}) \quad \text { b) } \cdot y^{\prime \prime}+y=\sin x, y(0)=0, y\left(\frac{\pi}{2}\right)=0(3 \mathrm{pts})
$$

2. 3 pts if variation of parameters and 2 pts otherwise. $y^{\prime \prime}-y=x e^{x} \quad$ Just in case you need: y_{p} has the form $A x e^{x}+B x^{2} e^{x}$
3. a). $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$. If y_{p} is a solution, y is any other solution,then $y-y_{p}=y_{c}$ is the solution to the complementary equation. (1 pt) b). In a, if $G(x)=G_{1}(x)+G_{2}(x)$, $y_{p 1}$ solves $a y^{\prime \prime}+b y^{\prime}+c y=G_{1}(x)$ and $y_{p 2}$ solves $a y^{\prime \prime}+b y^{\prime}+c y=G_{2}(x)$, then y_{p} can be chosen to be $y_{p 1}+y_{p 2}(1 \mathrm{pt})$

Bonus 1: $y^{\prime \prime \prime}-7 y^{\prime}+6 y=x^{2}(2 \mathrm{pts})$. Hint: For $y^{\prime \prime \prime}-7 y^{\prime}+6 y=0, e^{x}$ is a solution, so the aux. equation (which exists since coefficients are constants) has a factor $r-1$.

Bonus 2:Simple Harmonic Motion: A mass m is attached on a spring that has a spring constant k. Pull the mass with a displacement $y(0)=C$ from equilibrium position O to A^{\prime} and then release. Supposing no friction, find the equation the displacement $y(t)$ satisfies (1 pt) and the time needed to reach the midpoint of O and A^{\prime} for the first time. (2 pts)

