Math 222 Quiz 7

March 23, 2011

Your Name:
Your Section:

Instructions: You have 20 minutes to solve the following problems and the total score is 10 points. Below, y is a function of x.

1. Find the general solutions:
a) $y^{\prime \prime}-y^{\prime}-12 y=0(2 \mathrm{pts})$
b). $y^{\prime \prime}+2 y^{\prime}+4 y=0(3 \mathrm{pts})$
2. Find the unique solution to the following: $(3 \mathrm{pts})$

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y(0)=0, y^{\prime}(0)=1
$$

3. a). If y_{1} and y_{2} are solutions to $y^{\prime \prime}-5 y^{\prime}+6 y=0$, how about $y_{1}+y_{2}$? (1 pt) b). If y_{1} and y_{2} are solutions to $y^{\prime \prime}-5 y^{\prime}+6=0$, how about $y_{1}+y_{2}$? (1 pt)

Bonus 1: If I tell you that two solutions to the equation $x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0$ are of the type $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln x$ (here, the two r 's are the same), which are obviously linearly independent, find r and write out the general solution. (2 pts)
Bonus 2: Solve $y^{\prime \prime}-5 y^{\prime}+6=0(1 \mathrm{pt})$ and $2\left(y y^{\prime}\right)^{\prime}-10 y y^{\prime}+6 y^{2}=0(2 \mathrm{pts})$
Hint: Note that the first is inhomogeneous and the second is nonlinear! For the first, you can either do substitution $u=y^{\prime}$ or use the method you'll learn soon and for the second, use substitution $u=y^{2}$

