Math 222 Quiz 6

March 9, 2011

Instructions: You have 20 minutes to solve the following problems and the total score is 10 points. One bonus problem is on the back.

1. Solve the ordinary differential equation $\frac{d y}{d x}=e^{x-y}$ (3 pts)
2. $y^{\prime}+(\tan x) y=\cos ^{2} x$
a). Solve it. (3 pts) b). Check what you get in a) is the solution. (1 pt)
3. $x d y+x^{4} e^{-x} d x=3 y d x$ (Hint: $\left.y^{\prime}=d y / d x\right)(2+1 \mathrm{pts})$
a). If I tell you this is first order linear equation, get the standard form and solve it.
b). If $y_{1}(x)$ is the solution satisfying $\lim _{x \rightarrow+\infty} y(x)$ exists, find $y_{1}(x)$ and get the limit.
(Bonus) In the picture, the electromotive force $U_{0}=1 V$, the capacitance $C=1 F$ and the resistance $R=1 \Omega$. At first, the switch was on the left and there was no current. At $t=0$, we turned the switch to the right.
1). It's known that the charge q on the capacitance and the voltage u_{c} satisfy $q=C u_{c}$. We also know the current $i=\frac{d q}{d t}$. Ohm's Law: the voltage on the resistance is $i R$. Kirchhoff's law: $u_{c}+i R=0$. The charge on the capacitance couldn't change immediately and thus the voltage wouldn't change at $t=0$. Give out the differential equation that u_{c} satisfies and the initial condition $u_{c}(0)$. (2 pts)
$2)$. Find the time when the voltage is $e^{-1} V$. (1 pt)

(a)

(b)
