Math 222 Quiz 10

April 20, 2011

Your Name:
Your Section:

Instructions: You have 20 minutes to solve the following problems and the total score is 10 points.

1. Find the slope of the curve $x=t^{3}+t, y+2 t^{3}=2 x+t^{2}$ at $t=1$. (2') Get the tangent line there. (1^{\prime})
2. The cycloid can be parametrized as $x=a(t-\sin t), y=a(1-\cos t)$. Find the area under one arch (and above x-axis) (2^{\prime}) and the length of one arch. (2^{\prime})
3. (a). Find Cartesian coordinate of $P(\sqrt{2}, \pi / 4)$ (in polar coordinate). Plot it. (2')
(b). Change the Cartesian equation into its equivalent polar equation: $y^{2}=4 x\left(1^{\prime}\right)$

Bonus 1:(a). Fill in the blanks (3^{\prime}):
$\int_{2}^{2} \sqrt{10 \cos ^{2} t+8 \sin ^{2} t} d t=$

$$
\int_{-1}^{1}\left(1+\frac{t}{\sqrt{10 \cos ^{2} t+8 \sin ^{2} t}}\right) d t=
$$

\qquad
If s is the arc length parameter, then $\int_{2}^{5} \sqrt{x^{\prime}(s)^{2}+y^{\prime}(s)^{2}} d s=$ \qquad
(b). The velocity vector for $x=x(t), y=y(t)$ is $\vec{v}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle$. Give a geometric explanation for the formula $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$. $\left(2^{\prime}\right)$

Bonus 2: Polar eqns: What's this curve called $r=\frac{6}{2+3 \cos \theta} ?\left(2^{\prime}\right)$ How about $r=2 \cos \theta$? (1^{\prime})

