Math222 Exercise Quick answers

1. Complex Number

A. suppose $z = \frac{2e^{i\pi/3}}{1-\sqrt{3}i} = a + bi = re^{i\theta}$. Find $a, b, r = |z|, \theta = arg(z)$

B. Solve the equation $z^4 - z = 0$ in C

C. Use De'Moirve's theorem to express $\sin(2\theta)$ using $\sin\theta$, $\cos\theta$

D. Draw the Graph of $\omega = \sqrt{2} + \sqrt{2}i$. Don't calculate $\overline{\omega} 1/\omega i\omega$ and draw the pictures of them.

Ans: 1). First approach: $2e^{i\pi/3} = 2(\cos(\pi/3) + i\sin(\pi/3)) = 1 + \sqrt{3}i$. Then $z = \frac{1+i\sqrt{3}}{1-\sqrt{3}i}$. Then multiply the conjugate of the denominator, we get $z = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. $r = \sqrt{a^2 + b^2} = 1$ and $\theta = 2\pi/3$.

Second approach, $1 - \sqrt{3}i = 2e^{-\pi/3}$ and then the ans is $\frac{2e^{i\pi/3}}{2e^{-i\pi/3}}$ 2). $z(z^3 - 1) = 0$. Then, one root is 0 and the other three satisfy $z^3 = 1$ and $1 * e^{i(0+2k\pi)/3} \ (0 < k < 2)$

3). The theorem says $\cos(2\theta) + i\sin(2\theta) = (\cos\theta + i\sin\theta)^2 = (\cos^2\theta - \sin^2\theta + i\sin\theta)^2$ $i2\sin\theta\cos\theta$). Compare the imaginary parts $\sin(2\theta) = 2\cos\theta\sin\theta$

4). For this number, $r = \sqrt{2+2} = 2$. Then $2 * \cos \theta = \sqrt{2}$. $\omega = 2e^{i\pi/4}$. $1/\omega = (1/2)e^{-i\pi/4}$. $i\omega$ just rotating the graph of ω by 90°

2. First Order ODE

2.1. Separable (Think about the form of separable equations)

$$\frac{dy}{dx} - xy^2 = 9x$$
$$y' = ky$$

Note: Are they linear?

Ans: For the first, we have $\frac{dy}{dx} = x(9+y^2)$ and then $\int \frac{1}{9+y^2} dy = \int x dx$.

$$\frac{1}{3} \tan^{-1}(y/3) = x^2/2 + C$$

 $dy/y = kdx$ and then $|y| = Ae^{kx}$. $y = Be^{kx}$

For linear first order equation, see below. The first is not linear and the second is both separable and linear.

2.2. Linear(Think about the definition of linear equations.)

 $y' + (\tan x)y = \sec x$ (Integrating factor)

y' + 4y = 5 (Using integrating factor and undetermined coefficients to solve). What's the limit $\lim_{x\to +\infty} x^3(y_1(x)+5/4)$ where $y_1(0)=1$.

Ans: Linear first order is like: a(x)y' + b(x)y = f(x)

The first equation can be solve by integrating factor. Notice that it is linear, and $\mu(x) = e^{\int \tan x dx}$, pick $\mu(x) = \sec x$. Then, multiply this on both sides, $((\sec x)y)' = \sec^2 x$ and then $(\sec x)y = \tan x + C$ and $y = \sin x + C\cos x$ For the second, the y' + 4y = 0 $y = Ce^{-4x}$ (a typo again....). Find the particular solution -5/4. Then $y(x) = Ce^{-4x} - 5/4$. Then x^3e^{-4x} , using L'H, the limit is 0.

3. Second Order

3.1. General theory

(From Quiz 7) If I tell you that two solutions to the equation $x^2y'' - 5xy' + 9y = 0$ are of the type $y_1 = x^r$ and $y_2 = x^r \ln x$ (here, the two r's are the same), which are obviously linearly independent, find r and write out the general solution.

What if the right hand side is 9? $9 + x^2(x^3)$ is too hard for you, use x^2 here)? ans: For the first part, please see the answer to the quiz. For the second part, the right hand side is not zero, then it's inhomogeneous. Since, we find $y_c = C_1 x^3 + C_2 x^3 \ln x$, we only need to find y_p . For $y_p = 1$. For $y_p = 1$. For $y_p = 1$ and the second is $y_p = 1$ is $y_p = 1$ and the second is $y_p = 1$ is $y_p = 1$. The answer for first is $y_p = 1$ is $y_p = 1$. Then, $y_p = 1$ is $y_p = 1$ in $y_p = 1$. Then, $y_p = 1$ is $y_p = 1$ in $y_p = 1$. Then, $y_p = 1$ is $y_p = 1$. Then, $y_p = 1$ is $y_p = 1$ in $y_p = 1$.

3.2. 2nd linear ODE with constant coefficients

 $y'' + 4y = \sin(2x)$

$$y'' + 2y' - 3y = x^2 + e^x \cdot y(0) = 0, y'(0) = 0$$

$$y'' - 4y' + 4y = e^{2x}$$

ans: The homogeneous solution, $r^2 + 4 = 0$ and then $r^2 = -4, r = \pm 2i$. $y_c(x) = C_1 \cos(2x) + C_2 \sin(2x)$. For the particular solution, notice that $\sin(2x)$ is a part of the general solution, try $A_1x\cos(2x) + A_2x\sin(2x)$. $y_p = -\frac{1}{4}x\cos(2x)$.

(a typo here) $r^2 + 2r - 3 = 0$, r = -3, 1. $y_c = C_1 e^{-3x} + C_2 e^x$. for x^2 , just try $Ax^2 + Bx + C$ since the coefficient of y is nonzero. For e^x , since it's a single root, try Dxe^x .

 $r^2 - 4r + 4 = 0$. r = 2 is a double root. $y_c = C_1 e^{2x} + C_2 x e^{2x}$. For particular solution, since e^{2x} , xe^{2x} are both solutions to the homogeneous equation, we must try $y_p = Ax^2 e^{2x}$.

3.3. Spring-Mass Discuss your homework.

The formula is $my''(t) + \delta y'(t) + ky(t) = f(t)$. Notice the positive direction! An undamped mass-spring system with a mass of 1kg, has a period of 1s. What is the spring constant k? If the initial condition is y(0) = 1m, and y'(0) = 1m/s, find the motion of the mass. Make a careful graph of the

motion y(t).

Since, it's undamped, $\delta=0$. We don't mention the force, so f(t)=0. Then, 1*y''+ky=0. It has a period of 1. Solve this equation, $C_1\cos(\sqrt{k}t)+C_2\sin(\sqrt{k}t)$, we can find the period is $2\pi/\sqrt{k}$. (The general formula is $T=2\pi\sqrt{m/k}$). $k=4\pi^2$. Then, $y(t)=C_1\cos(2\pi t)+C_2\sin(2\pi t)$. Then, determine the constants. Here, upward is positive and y(0)=1 and y'(0)=1, you can determine the coefficients.