1. Complex Number
A. suppose $z=\frac{2 e^{i \pi / 3}}{1-\sqrt{3} i}=a+b i=r e^{i \theta}$. Find $a, b, r=|z|, \theta=\arg (z)$
B. Solve the equation $z^{4}-z=0$ in C
C. Use De'Moirve's theorem to express $\sin (2 \theta)$ using $\sin \theta, \cos \theta$
D. Draw the Graph of $\omega=\sqrt{2}+\sqrt{2} i$. Don't calculate $\bar{\omega} 1 / \omega i \omega$ and draw the pictures of them.
Ans: 1). First approach: $2 e^{i \pi / 3}=2(\cos (\pi / 3)+i \sin (\pi / 3))=1+\sqrt{3} i$. Then $z=\frac{1+i \sqrt{3}}{1-\sqrt{3} i}$. Then multiply the conjugate of the denominator, we get $z=-\frac{1}{2}+i \frac{\sqrt{3}}{2} . r=\sqrt{a^{2}+b^{2}}=1$ and $\theta=2 \pi / 3$.
Second approach, $1-\sqrt{3} i=2 e^{-\pi / 3}$ and then the ans is $\frac{2 e^{i \pi / 3}}{2 e^{-i \pi / 3}}$
2). $z\left(z^{3}-1\right)=0$. Then, one root is 0 and the other three satisfy $z^{3}=1$ and $1 * e^{i(0+2 k \pi) / 3}(0 \leq k \leq 2)$
3). The theorem says $\cos (2 \theta)+i \sin (2 \theta)=(\cos \theta+i \sin \theta)^{2}=\left(\cos ^{2} \theta-\sin ^{2} \theta+\right.$ $i 2 \sin \theta \cos \theta$). Compare the imaginary parts $\sin (2 \theta)=2 \cos \theta \sin \theta$
4). For this number, $r=\sqrt{2+2}=2$. Then $2 * \cos \theta=\sqrt{2}$. $\omega=2 e^{i \pi / 4}$. $1 / \omega=(1 / 2) e^{-i \pi / 4}$. i ω just rotating the graph of ω by 90°

2. First Order ODE

2.1. Separable(Think about the form of separable equations)
$\frac{d y}{d x}-x y^{2}=9 x$
$y^{\prime}=k y$
Note: Are they linear?
Ans: For the first, we have $\frac{d y}{d x}=x\left(9+y^{2}\right)$ and then $\int \frac{1}{9+y^{2}} d y=\int x d x$. $\frac{1}{3} \tan ^{-1}(y / 3)=x^{2} / 2+C$ $d y / y=k d x$ and then $|y|=A e^{k x} . y=B e^{k x}$
For linear first order equation, see below. The first is not linear and the second is both separable and linear.
2.2. Linear(Think about the definition of linear equations.)
$y^{\prime}+(\tan x) y=\sec x$ (Integrating factor)
$y^{\prime}+4 y=5$ (Using integrating factor and undetermined coefficients to solve).
What's the limit $\lim _{x \rightarrow+\infty} x^{3}\left(y_{1}(x)+5 / 4\right)$ where $y_{1}(0)=1$.
Ans: Linear first order is like: $a(x) y^{\prime}+b(x) y=f(x)$
The first equation can be solve by integrating factor. Notice that it is linear, and $\mu(x)=e^{\int \tan x d x}$, pick $\mu(x)=\sec x$. Then, multiply this on both sides,
$((\sec x) y)^{\prime}=\sec ^{2} x$ and then $(\sec x) y=\tan x+C$ and $y=\sin x+C \cos x$
For the second, the $y^{\prime}+4 y=0 y=C e^{-4 x}$ (a typo again....). Find the particular solution $-5 / 4$. Then $y(x)=C e^{-4 x}-5 / 4$. Then $x^{3} e^{-4 x}$, using L'H, the limit is 0 .

3. Second Order

3.1. General theory

(From Quiz 7) If I tell you that two solutions to the equation $x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=$ 0 are of the type $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln x$ (here, the two r 's are the same), which are obviously linearly independent, find r and write out the general solution.
What if the right hand side is $9 ? 9+x^{2}\left(x^{3}\right.$ is too hard for you, use x^{2} here $)$? ans: For the first part, please see the answer to the quiz. For the second part, the right hand side is not zero, then it's inhomogeneous. Since, we find $y_{c}=C_{1} x^{3}+C_{2} x^{3} \ln x$, we only need to find y_{p}. For $9, y_{p 1}=1$. For x^{2}, try $A x^{2}$. Then, $y=y_{c}+y_{p}$. The answer for first is $y(x)=C_{1} x^{3}+C_{2} x^{3} \ln x+1$ and the second is $y(x)=C_{1} x^{3}+C_{2} x^{3} \ln x+1+x^{2}$
3.2. 2nd linear ODE with constant coefficients
$y^{\prime \prime}+4 y=\sin (2 x)$
$y^{\prime \prime}+2 y^{\prime}-3 y=x^{2}+e^{x} \cdot y(0)=0, y^{\prime}(0)=0$
$y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x}$
ans: The homogeneous solution, $r^{2}+4=0$ and then $r^{2}=-4, r= \pm 2 i$. $y_{c}(x)=C_{1} \cos (2 x)+C_{2} \sin (2 x)$. For the particular solution, notice that $\sin (2 x)$ is a part of the general solution, try $A_{1} x \cos (2 x)+A_{2} x \sin (2 x)$. $y_{p}=-\frac{1}{4} x \cos (2 x)$.
(a typo here) $r^{2}+2 r-3=0, r=-3,1 . y_{c}=C_{1} e^{-3 x}+C_{2} e^{x}$. for x^{2}, just try $A x^{2}+B x+C$ since the coefficient of y is nonzero. For e^{x}, since it's a single root, try $D x e^{x}$.
$r^{2}-4 r+4=0 . r=2$ is a double root. $y_{c}=C_{1} e^{2 x}+C_{2} x e^{2 x}$. For particular solution, since $e^{2 x}, x e^{2 x}$ are both solutions to the homogeneous equation, we must try $y_{p}=A x^{2} e^{2 x}$.

3.3. Spring-Mass Discuss your homework.

The formula is $m y^{\prime \prime}(t)+\delta y^{\prime}(t)+k y(t)=f(t)$. Notice the positive direction! An undamped mass-spring system with a mass of 1 kg , has a period of 1 s . What is the spring constant k ? If the initial condition is $y(0)=1 m$, and $y^{\prime}(0)=1 \mathrm{~m} / \mathrm{s}$, find the motion of the mass. Make a careful graph of the
motion $\mathrm{y}(\mathrm{t})$.
Since, it's undamped, $\delta=0$. We don't mention the force, so $f(t)=$ 0 . Then, $1 * y^{\prime \prime}+k y=0$. It has a period of 1 . Solve this equation, $C_{1} \cos (\sqrt{k} t)+C_{2} \sin (\sqrt{k} t)$, we can find the period is $2 \pi / \sqrt{k}$. (The general formula is $T=2 \pi \sqrt{m / k})$. $k=4 \pi^{2}$. Then, $y(t)=C_{1} \cos (2 \pi t)+C_{2} \sin (2 \pi t)$. Then, determine the constants. Here, upward is positive and $y(0)=1$ and $y^{\prime}(0)=1$, you can determine the coefficients.

