1. Use the method of undetermined coefficients
 a). \(y'' + y = 2x + 3e^x \) (2 pts)
 b). \(y'' + y = \sin x, y(0) = 0, y(\frac{\pi}{2}) = 0 \) (3 pts)
 Ans: a). The complementary equation is \(y'' + y = 0 \) and the corresponding aux.
equation is \(r^2 + 1 = 0 \). We have \(r = \pm i \). Then, \(y_c = C_1 \cos x + C_2 \sin x \).

 For term \(2x \), we can try \(Ax + B \). \(e^x \) is not a part of the solution to the complementary equation and thus for the second term, we try \(Ce^x \). We try \(y_p = Ax + B + Ce^x \).

 Then, we have \(y''_p + y_p = 2x + 3e^x \) and thus \(A = 2, B = 0, C = 3/2 \).

 The answer is \(y = y_c + y_p = C_1 \cos x + C_2 \sin x + 2x + 3e^x / 2 \)

b). The complementary part is the same as a). We then notice that \(\sin x \) is a part of the homogeneous part and thus we try \(y_p = D_1 x \cos x + D_2 x \sin x \). Then, we have

 \[
y''_p = D_1(2 \cos x - x \sin x) + D_2(2 \sin x + x \cos x).
 \]

 \[
y''_p + y_p = -2D_1 \sin x + 2D_2 \cos x = \sin x.
 \]

 Thus \(D_1 = -1/2, D_2 = 0 \). We have

 \[
y_p = -\frac{1}{2} x \cos x.
 \]

 \[
y = C_1 \cos x + C_2 \sin x - \frac{1}{2} x \cos x.
 \]

 \[
y(0) = C_1 + 0 + 0 = 0.\]

 \[
y(\pi/2) = 0 + C_2 + 0 = 0.
 \]

 We can see that \(C_1 = 0, C_2 = 0 \).

 Final answer is \(y(x) = -\frac{1}{2} x \cos x \)

2. 3 pts if variation of parameters and 2 pts otherwise.
 \(y'' - y = xe^x \)
 Just in case you need: \(y_p \) has the form \(Axe^x + Bx^2e^x \)

 Ans: For the complementary equation, it’s easy to solve \(y'' - y = 0 \). \(r^2 - 1 = 0 \) and \(r = \pm 1 \). \(y_c = Ce^x + Ce^{-x} \)

 As I say, if you use the form I give you, you are not using variation of parameters and you can get 2 pts at most. Using this method, you can just plug in and get

 \[
y''_p = A(2e^x + xe^x) + B(2e^x + 4xe^x + x^2e^x)
 \]

 Thus \(B = 1/4, A = -1/4 \). \(y = C_1e^x + C_2e^{-x} - \frac{1}{4} xe^x + \frac{1}{4} x^2e^x \)

 I want you to use variation of parameters. Assume \(y = v_1(x)e^x + v_2(x)e^{-x} \) and impose \(v_1'(x)e^x + v_2'(x)e^{-x} = 0 \). Then, we can get another equation by plugging this form into the equation \(v_1'(x)e^x + v_2'(x)e^{-x} = xe^x \).

 We can get \(v_1'(x) = \frac{1}{2} x \) and \(v_2'(x) = -\frac{1}{2} xe^{2x} \). Then \(v_1(x) = \int \frac{x}{2} dx \) and we pick

 \[
v_1(x) = \frac{x^2}{4}. \quad v_2(x) = \int (-\frac{1}{2} xe^{2x}) dx.
 \]

 Integrating by parts, we get

 \[
v_2(x) = -\frac{1}{4} xe^{2x} + \frac{1}{8} e^{2x} + C.
 \]

 We pick \(v_2(x) = -\frac{1}{4} xe^{2x} + \frac{1}{8} e^{2x} \). Finally, we have

 \[
y_p = v_1(x)e^x + v_2(x)e^{-x} = \frac{1}{4} xe^x - \frac{1}{4} xe^x + \frac{1}{8} e^x.
 \]

 Then, general solution is

 \[
y(x) = C_1e^x + C_2e^{-x} + \frac{1}{4} xe^x - \frac{1}{4} xe^x + \frac{1}{8} e^x = C_1e^x + C_2e^{-x} - \frac{1}{4} xe^x + \frac{1}{4} x^2e^x
 \]

3. a). \(ay'' + by' + cy = G(x) \). If \(y_p \) is a solution, \(y \) is any other solution, then \(y - y_p = y_c \) is the solution to the complementary equation. (1 pt)

 b). In a), if \(G(x) = G_1(x) + G_2(x) \), \(y_{p1} \) solves \(ay'' + by' + cy = G_1(x) \) and \(y_{p2} \) solves \(ay'' + by' + cy = G_2(x) \), then \(y_p \) can be chosen to be \(y_{p1} + y_{p2} \) (1 pt)
Solve this equation, we have \(mr'' + my' + cy = G(x) \). Then, we can have
\[
a(y-y_p)''+b(y-y_p)' + c(y-y_p) = (ay'' + by' + cy) - (ay''_p + by'_p + cy_p) = G(x) - G(x) = 0.
\]
Hence, \(y - y_p \) is the solution to the complementary equation and \(y = y_c + y_p \). This is the basis for us to solve the inhomogeneous equations.

b). By the definition of solutions, we should have \(ay''_p + by'_p + cy_p = G_1(x) \) and \(ay''_p + by'_p + cy_p = G_2(x) \). Then, we can see that
\[
a(y_p1 + y_p2)' + b(y_p1 + y_p2) + c(y_p1 + y_p2) = ay''_p + by'_p + cy_p + ay''_p + by'_p + cy_p = G_1(x) + G_2(x) = G(x).
\]
Thus, we can pick \(y_p \) to be that form.

Bonus 1: \(y'' - 7y' + 6y = x^2 \) (2 pts). Hint: For \(y'' - 7y' + 6y = 0 \), \(e^x \) is a solution, so the aux. equation (which exists since coefficients are constants) has a factor \(r - 1 \).
Ans: Similar to 2nd order ODE with constant coefficients, for 3rd order ODE. Solve the complementary equation first: \(y'' - 7y' + 6y = 0 \). The corresponding aux. equations can be written as \(r^3 - 7r + 6 = 0 \). As the hint I give you says, this equation has a factor \(r - 1 \).
Hence we have \(r^3 - 7r + 6 = (r - 1) \star g(r) \). \(g(r) \) can be obtained by long division. The answer is \(g(r) = r^2 + r - 6 \).
Hence, \(r^3 - 7r + 6 = (r - 1)(r^2 + r - 6) = (r - 1)(r - 2)(r + 3) \).
We have three roots \(r = 1, 2, -3 \). Then \(y_c(x) = C_1e^x + C_2e^{2x} + C_3e^{-3x} \)
For the particular solution, it’s easy. Notice that the coefficient of \(y \) is nonzero, we can try \(y_p = Ax^2 + Bx + C \). Then \(-7(2Ax + B) + 6(Ax^2 + Bx + C) = x^2 \). We have \(A = 1/6, B = 7/18, C = 49/108 \). Then \(y(x) = C_1e^x + C_2e^{2x} + C_3e^{-3x} + x^2/6 + 7x/18 + 49/108 \)

Bonus 2: Simple Harmonic Motion: A mass \(m \) is attached on a spring that has a spring constant \(k \). Pull the mass with a displacement \(y(0) = C \) from equilibrium position \(O \) to \(A' \) and then release. Supposing no friction, find the equation the displacement \(y(t) \) satisfies (1 pt) and the time needed to reach the midpoint of \(O \) and \(A' \) for the first time. (2 pts)

Ans: Assume the rightward is positive. Then, the elongation of the spring is exactly the displacement \(y \). By Hook’s law, the force of the spring is \(-ky \) since right is positive. This is the net force. Newton’s law says that \(F = ma \), which is exactly \(-ky = my'' \) and thus \(my'' + ky = 0 \).
Solve this equation, we have \(mr^2 + k = 0 \) and \(r = \pm i\sqrt{k/m} \). The general solution is \(y(t) = C_1 \cos(\sqrt{k/mt}) + C_2 \sin(\sqrt{k/mt}) \). The initial position is \(y(0) = C \). The initial velocity is 0 and thus \(y'(0) = 0 \).
We have \(C_1 = C, C_2 = 0 \). Then \(y(t) = C \cos(\sqrt{k/mt}) \).
You can also find that the period is \(T = 2\pi\sqrt{m/k} \). When it reaches the midpoint, \(y(t_1) = C/2 \).
Thus, \(\sqrt{k/mt} = \pi/3 \) and we have \(t_1 = \frac{\pi}{3}\sqrt{m/k} \).

2