Answer to Quiz 8

By Lei Mar 30, 2011

- 1. Use the method of undetermined coefficients
 - a). $y'' + y = 2x + 3e^x$ (2 pts) b). $y'' + y = \sin x$, y(0) = 0, $y(\frac{\pi}{2}) = 0$ (3 pts) Ans:a). The complementary equation is y'' + y = 0 and the corresponding aux. equation is $r^2 + 1 = 0$. We have $r = \pm i$. Then, $y_c = C_1 \cos x + C_2 \sin x$. For term 2x, we can try Ax + B. e^x is not a part of the solution to the complementary equation and thus for the second term, we try Ce^x . We try $y_p = Ax + B + Ce^x$. Then, we have $y_p'' + y_p = 2x + 3e^x$ and thus A = 2, B = 0, C = 3/2. The answer is $y = y_c + y_p = C_1 \cos x + C_2 \sin x + 2x + 3e^x/2$
 - b). The complementary part is the same as a). We then notice that $\sin x$ is a part of the homogeneous part and thus we try $y_p = D_1 x \cos x + D_2 x \sin x$. Then, we have $y_p'' = D_1(-2\sin x x\cos x) + D_2(2\cos x x\sin x)$. $y_p'' + y_p = -2D_1\sin x + 2D_2\cos x = \sin x$. Thus $D_1 = -1/2, D_2 = 0$. We have $y_p = -\frac{1}{2}x\cos x$. $y = C_1\cos x + C_2\sin x \frac{1}{2}x\cos x$. $y(0) = C_1 + 0 + 0 = 0$. $y(\pi/2) = 0 + C_2 + 0 = 0$. We can see that $C_1 = 0, C_2 = 0$. Final answer is $y(x) = -\frac{1}{2}x\cos x$
- 2. 3 pts if variation of parameters and 2 pts otherwise. $y'' y = xe^x$ Just in case you need: y_p has the form $Axe^x + Bx^2e^x$

Ans: For the complementary equation, it's easy to solve y'' - y = 0. $r^2 - 1 = 0$ and $r = \pm 1$. $y_c = C_1 e^x + C_2 e^{-x}$

As I say, if you use the form I give you, you are not using variation of parameters and you can get 2 pts at most. Using this method, you can just plug in and get $\frac{A(2e^x + me^x) + B(2e^x + 4me^x + m^2e^x)}{A(2e^x + me^x) + B(2e^x + 4me^x + m^2e^x)} = \frac{A(2e^x + me^x) + B(2e^x + 4me^x + m^2e^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + 4me^x + m^2e^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + 4me^x + m^2e^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + 4me^x + me^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + 4me^x + me^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + 4me^x + me^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + 4me^x + me^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + 4me^x + me^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + 4me^x + me^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + me^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + me^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + me^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + me^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x) + B(2e^x + me^x)}{A(2e^x + me^x)} = \frac{A(2e^x + me^x)}{A(2e^x + me^x)} =$

$$y_p'' = A(2e^x + xe^x) + B(2e^x + 4xe^x + x^2e^x)$$
 and then $y_p'' - y_p = (2A + 2B)e^x + 4Bxe^x$.
Thus $B = 1/4$, $A = -1/4$. $y = C_1e^x + C_2e^{-x} - \frac{1}{4}xe^x + \frac{1}{4}x^2e^x$

I want you to use variation of parameters. Assume $y = v_1(x)e^x + v_2(x)e^{-x}$ and impose $v'_1(x)e^x + v'_2(x)e^{-x} = 0$. Then, we can get another equation by plugging this form into the equation $v'_1(x)e^x - v'_2(x)e^{-x} = xe^x$.

We can get $v_1'(x) = \frac{1}{2}x$ and $v_2'(x) = -\frac{1}{2}xe^{2x}$. Then $v_1(x) = \int \frac{x}{2}dx$ and we pick $v_1(x) = x^2/4$. $v_2(x) = \int (-\frac{1}{2}xe^{2x})dx$. Integrating by parts, we get $v_2(x) = -\frac{1}{4}xe^{2x} + \frac{1}{8}e^{2x} + C$. We pick $v_2(x) = -\frac{1}{4}xe^{2x} + \frac{1}{8}e^{2x}$. Finally, we have $y_p = v_1(x)e^x + v_2(x)e^{-x} = \frac{1}{4}x^2e^x - \frac{1}{4}xe^x + \frac{1}{8}e^x$. Then, general solution is $y(x) = C_1e^x + C_2e^{-x} + \frac{1}{4}x^2e^x - \frac{1}{4}xe^x + \frac{1}{8}e^x = C_1'e^x + C_2e^{-x} - \frac{1}{4}xe^x + \frac{1}{4}x^2e^x$

- 3. a). ay'' + by' + cy = G(x). If y_p is a solution, y is any other solution, then $y y_p = y_c$ is the solution to the complementary equation. (1 pt)
 - b). In a, if $G(x) = G_1(x) + G_2(x)$, y_{p1} solves $ay'' + by' + cy = G_1(x)$ and y_{p2} solves $ay'' + by' + cy = G_2(x)$, then y_p can be chosen to be $y_{p1} + y_{p2}$ (1 pt)

Ans: a). Since they are solutions to the equation, we have $ay_p'' + by_p' + cy_p = G(x)$ and ay'' + by' + cy = G(x). Then, we can have $a(y-y_p)'' + b(y-y_p)' + c(y-y_p) = (ay'' + by' + cy) - (ay_p'' + by_p' + cy_p) = G(x) - G(x) = 0$. Hence, $y-y_p$ is the solution to the complementary equation and $y=y_c+y_p$. This is the basis for us to solve the inhomogeneous equations. b). By the definition of solutions, we should have $ay_{p1}'' + by_{p1}' + cy_{p1} = G_1(x)$ and $ay_{p2}'' + by_{p2}' + cy_{p2} = G_2(x)$. Then, we can see that $a(y_{p1} + y_{p2})'' + b(y_{p1} + y_{p2})' + c(y_{p1} + y_{p2}) = ay_{p1}'' + by_{p1}' + cy_{p1} + ay_{p2}'' + by_{p2}' + cy_{p2} = G_1(x) + G_2(x) = G(x)$. Thus, we can pick y_p to be that form.

Bonus 1: $y''' - 7y' + 6y = x^2$ (2 pts). Hint: For y''' - 7y' + 6y = 0, e^x is a solution, so the aux. equation (which exists since coefficients are constants) has a factor r - 1. Ans: Similar to 2nd order ODE with constant coefficients, for 3rd order ODE. Solve the complementary equation first: y''' - 7y' + 6y = 0. The corresponding aux. equations can be written as $r^3 - 7r + 6 = 0$. As the hint I give you says, this equation has a factor r - 1. Hence we have $r^3 - 7r + 6 = (r - 1) * g(r)$. g(r) can be obtained by long division. The answer is $g(r) = r^2 + r - 6$. Hence, $r^3 - 7r + 6 = (r - 1)(r^2 + r - 6) = (r - 1)(r - 2)(r + 3)$. We have three roots r = 1, 2, -3. Then $y_c(x) = C_1 e^x + C_2 e^{2x} + C_3 e^{-3x}$ For the particular solution, it's easy. Notice that the coefficient of y is nonzero, we can try $y_p = Ax^2 + Bx + C$. Then $-7(2Ax + B) + 6(Ax^2 + Bx + C) = x^2$. We have A = 1/6, B = 7/18, C = 49/108. Then $y(x) = C_1 e^x + C_2 e^{2x} + C_3 e^{-3x} + x^2/6 + 7x/18 + 49/108$

Bonus 2:Simple Harmonic Motion: A mass m is attached on a spring that has a spring constant k. Pull the mass with a displacement y(0) = C from equilibrium position O to A' and then release. Supposing no friction, find the equation the displacement y(t) satisfies (1 pt) and the time needed to reach the midpoint of O and A' for the first time. (2 pts)

Ans: Assume the rightward is positive. Then, the elongation of the spring is exactly the displacement y. By Hook's law, the force of the spring is -ky since right is positive. This is the net force. Newton's law says that F = ma, which is exactly -ky = my'' and thus my'' + ky = 0.

Solve this equation, we have $mr^2 + k = 0$ and $r = \pm i\sqrt{k/m}$. The general solution is $y(t) = C_1 \cos(\sqrt{k/m}t) + C_2 \sin(\sqrt{k/m}t)$. The initial position is y(0) = C. The initial velocity is 0 and thus y'(0) = 0. We have $C_1 = C, C_2 = 0$. Then $y(t) = C \cos(\sqrt{k/m}t)$. You can also find that the period is $T = 2\pi\sqrt{\frac{m}{k}}$. When it reaches the midpoint, $y(t_1) = C/2$. Thus, $\sqrt{k/m}t_1 = \pi/3$ and we have $t_1 = \frac{\pi}{3}\sqrt{\frac{m}{k}}$.