Answer to Quiz 8

By Lei Mar 30, 2011

1. Use the method of undetermined coefficients
a). $y^{\prime \prime}+y=2 x+3 e^{x}$ (2 pts)
b). $y^{\prime \prime}+y=\sin x, y(0)=0, y\left(\frac{\pi}{2}\right)=0(3 \mathrm{pts})$

Ans:a).The complementary equation is $y^{\prime \prime}+y=0$ and the corresponding aux.
equation is $r^{2}+1=0$. We have $r= \pm i$. Then, $y_{c}=C_{1} \cos x+C_{2} \sin x$.
For term $2 x$, we can try $A x+B . e^{x}$ is not a part of the solution to the complementary equation and thus for the second term, we try $C e^{x}$. We try $y_{p}=A x+B+C e^{x}$.
Then, we have $y_{p}^{\prime \prime}+y_{p}=2 x+3 e^{x}$ and thus $A=2, B=0, C=3 / 2$.
The answer is $y=y_{c}+y_{p}=C_{1} \cos x+C_{2} \sin x+2 x+3 e^{x} / 2$
b). The complementary part is the same as a). We then notice that $\sin x$ is a part of the homogeneous part and thus we try $y_{p}=D_{1} x \cos x+D_{2} x \sin x$. Then, we have
$y_{p}^{\prime \prime}=D_{1}(-2 \sin x-x \cos x)+D_{2}(2 \cos x-x \sin x)$.
$y_{p}^{\prime \prime}+y_{p}=-2 D_{1} \sin x+2 D_{2} \cos x=\sin x$. Thus $D_{1}=-1 / 2, D_{2}=0$. We have
$y_{p}=-\frac{1}{2} x \cos x$.
$y=C_{1} \cos x+C_{2} \sin x-\frac{1}{2} x \cos x . y(0)=C_{1}+0+0=0 . y(\pi / 2)=0+C_{2}+0=0$.
We can see that $C_{1}=0, C_{2}=0$.
Final answer is $y(x)=-\frac{1}{2} x \cos x$
2. 3 pts if variation of parameters and 2 pts otherwise.
$y^{\prime \prime}-y=x e^{x} \quad$ Just in case you need: y_{p} has the form $A x e^{x}+B x^{2} e^{x}$
Ans: For the complementary equation, it's easy to solve $y^{\prime \prime}-y=0 . r^{2}-1=0$ and $r= \pm 1$. $y_{c}=C_{1} e^{x}+C_{2} e^{-x}$
As I say, if you use the form I give you, you are not using variation of parameters and you can get 2 pts at most. Using this method, you can just plug in and get $y_{p}^{\prime \prime}=A\left(2 e^{x}+x e^{x}\right)+B\left(2 e^{x}+4 x e^{x}+x^{2} e^{x}\right)$ and then $y_{p}^{\prime \prime}-y_{p}=(2 A+2 B) e^{x}+4 B x e^{x}$. Thus $B=1 / 4, A=-1 / 4 . y=C_{1} e^{x}+C_{2} e^{-x}-\frac{1}{4} x e^{x}+\frac{1}{4} x^{2} e^{x}$
I want you to use variation of parameters. Assume $y=v_{1}(x) e^{x}+v_{2}(x) e^{-x}$ and impose $v_{1}^{\prime}(x) e^{x}+v_{2}^{\prime}(x) e^{-x}=0$. Then, we can get another equation by plugging this form into the equation $v_{1}^{\prime}(x) e^{x}-v_{2}^{\prime}(x) e^{-x}=x e^{x}$.
We can get $v_{1}^{\prime}(x)=\frac{1}{2} x$ and $v_{2}^{\prime}(x)=-\frac{1}{2} x e^{2 x}$. Then $v_{1}(x)=\int \frac{x}{2} d x$ and we pick $v_{1}(x)=x^{2} / 4 . v_{2}(x)=\int\left(-\frac{1}{2} x e^{2 x}\right) d x$. Integrating by parts, we get
$v_{2}(x)=-\frac{1}{4} x e^{2 x}+\frac{1}{8} e^{2 x}+C$. We pick $v_{2}(x)=-\frac{1}{4} x e^{2 x}+\frac{1}{8} e^{2 x}$. Finally, we have $y_{p}=v_{1}(x) e^{x}+v_{2}(x) e^{-x}=\frac{1}{4} x^{2} e^{x}-\frac{1}{4} x e^{x}+\frac{1}{8} e^{x}$. Then, general solution is $y(x)=C_{1} e^{x}+C_{2} e^{-x}+\frac{1}{4} x^{2} e^{x}-\frac{1}{4} x e^{x}+\frac{1}{8} e^{x}=C_{1}^{\prime} e^{x}+C_{2} e^{-x}-\frac{1}{4} x e^{x}+\frac{1}{4} x^{2} e^{x}$
3. a). $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$. If y_{p} is a solution, y is any other solution, then $y-y_{p}=y_{c}$ is the solution to the complementary equation. (1 pt)
b). In a, if $G(x)=G_{1}(x)+G_{2}(x)$, $y_{p 1}$ solves $a y^{\prime \prime}+b y^{\prime}+c y=G_{1}(x)$ and $y_{p 2}$ solves $a y^{\prime \prime}+b y^{\prime}+c y=G_{2}(x)$, then y_{p} can be chosen to be $y_{p 1}+y_{p 2}(1 \mathrm{pt})$

Ans: a). Since they are solutions to the equation, we have $a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p}=G(x)$ and $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$. Then, we can have $a\left(y-y_{p}\right)^{\prime \prime}+b\left(y-y_{p}\right)^{\prime}+c\left(y-y_{p}\right)=\left(a y^{\prime \prime}+b y^{\prime}+c y\right)-\left(a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p}\right)=G(x)-G(x)=0$. Hence, $y-y_{p}$ is the solution to the complementary equation and $y=y_{c}+y_{p}$. This is the basis for us to solve the inhomogeneous equations.
b). By the definition of solutions, we should have $a y_{p 1}^{\prime \prime}+b y_{p 1}^{\prime}+c y_{p 1}=G_{1}(x)$ and $a y_{p 2}^{\prime \prime}+b y_{p 2}^{\prime}+c y_{p 2}=G_{2}(x)$. Then, we can see that $a\left(y_{p 1}+y_{p 2}\right)^{\prime \prime}+b\left(y_{p 1}+y_{p 2}\right)^{\prime}+c\left(y_{p 1}+y_{p 2}\right)=a y_{p 1}^{\prime \prime}+b y_{p 1}^{\prime}+c y_{p 1}+a y_{p 2}^{\prime \prime}+b y_{p 2}^{\prime}+c y_{p 2}=$ $G_{1}(x)+G_{2}(x)=G(x)$. Thus, we can pick y_{p} to be that form.

Bonus 1: $y^{\prime \prime \prime}-7 y^{\prime}+6 y=x^{2}(2 \mathrm{pts})$. Hint: For $y^{\prime \prime \prime}-7 y^{\prime}+6 y=0, e^{x}$ is a solution, so the aux. equation (which exists since coefficients are constants) has a factor $r-1$.
Ans: Similar to 2 nd order ODE with constant coefficients, for 3rd order ODE. Solve the complementary equation first: $y^{\prime \prime \prime}-7 y^{\prime}+6 y=0$. The corresponding aux. equations can be written as $r^{3}-7 r+6=0$. As the hint I give you says, this equation has a factor $r-1$. Hence we have $r^{3}-7 r+6=(r-1) * g(r) . g(r)$ can be obtained by long division. The answer is $g(r)=r^{2}+r-6$. Hence, $r^{3}-7 r+6=(r-1)\left(r^{2}+r-6\right)=(r-1)(r-2)(r+3)$. We have three roots $r=1,2,-3$. Then $y_{c}(x)=C_{1} e^{x}+C_{2} e^{2 x}+C_{3} e^{-3 x}$
For the particular solution, it's easy. Notice that the coefficient of y is nonzero, we can try $y_{p}=A x^{2}+B x+C$. Then $-7(2 A x+B)+6\left(A x^{2}+B x+C\right)=x^{2}$. We have
$A=1 / 6, B=7 / 18, C=49 / 108$. Then
$y(x)=C_{1} e^{x}+C_{2} e^{2 x}+C_{3} e^{-3 x}+x^{2} / 6+7 x / 18+49 / 108$
Bonus 2:Simple Harmonic Motion: A mass m is attached on a spring that has a spring constant k. Pull the mass with a displacement $y(0)=C$ from equilibrium position O to A^{\prime} and then release. Supposing no friction, find the equation the displacement $y(t)$ satisfies (1 pt) and the time needed to reach the midpoint of O and A^{\prime} for the first time. (2 pts)

Ans: Assume the rightward is positive. Then, the elongation of the spring is exactly the displacement y. By Hook's law, the force of the spring is $-k y$ since right is positive. This is the net force. Newton's law says that $F=m a$, which is exactly $-k y=m y^{\prime \prime}$ and thus $m y^{\prime \prime}+k y=0$.
Solve this equation, we have $m r^{2}+k=0$ and $r= \pm i \sqrt{k / m}$. The general solution is $y(t)=C_{1} \cos (\sqrt{k / m} t)+C_{2} \sin (\sqrt{k / m} t)$. The initial position is $y(0)=C$. The initial velocity is 0 and thus $y^{\prime}(0)=0$. We have $C_{1}=C, C_{2}=0$. Then $y(t)=C \cos (\sqrt{k / m} t)$. You can also find that the period is $T=2 \pi \sqrt{\frac{m}{k}}$. When it reaches the midpoint, $y\left(t_{1}\right)=C / 2$. Thus, $\sqrt{k / m} t_{1}=\pi / 3$ and we have $t_{1}=\frac{\pi}{3} \sqrt{\frac{m}{k}}$.

