Answer to Quiz 7

By Lei Mar 23, 2011

1. Find the general solutions:

a)
$$y'' - y' - 12y = 0$$
 (2 pts) b). $y'' + 2y' + 4y = 0$ (3 pts)

Ans: They are both homogeneous equations with constant coefficients. We can write out the auxiliary equations first and solve.

a).
$$r^2 - r - 12 = 0$$
 and we have $r = 4, -3$. Two different real roots.

$$y(x) = C_1 e^{4x} + C_2 e^{-3x}.$$

b).
$$r^2 + 2r + 4 = 0$$
 and we have $r = -1 \pm \sqrt{3}i$. Two complex roots.

$$y(x) = e^{-x}(C_1\cos(\sqrt{3}x) + C_2\sin(\sqrt{3}x))$$

2. Find the unique solution to the following: (3 pts)

$$y'' + 4y' + 4y = 0$$
 $y(0) = 0, y'(0) = 1$

Ans: It's also a homogeneous equation with constant coefficients.

$$r^2 + 4r + 4 = 0$$
. $(r+2)^2 = 0$. One repeated root. General solution is

$$y(x) = C_1 e^{-2x} + C_2 x e^{-2x}.$$

$$y(0) = C_1 = 0$$
 and thus $y(x) = C_2 x e^{-2x}$.

$$y(0) = C_1 = 0$$
 and thus $y(x) = C_2 x e^{-2x}$.
 $y'(x) = C_2 (e^{-2x} - 2x e^{-2x})$. $y'(0) = C_2 = 1$. $y(x) = x e^{-2x}$

3. a). If y_1 and y_2 are solutions to y'' - 5y' + 6y = 0, how about $y_1 + y_2$? (1 pt)

b). If y_1 and y_2 are solutions to y'' - 5y' + 6 = 0, how about $y_1 + y_2$? (1 pt)

Ans: a). It's homogeneous. We can know $y_1 + y_2$ must be the solution. (You can prove like this:

 $(y_1 + y_2)'' - 5(y_1 + y_2)' + 6(y_1 + y_2) = y_1'' - 5y_1' + 6y_1 + y_2'' - 5y_2' + 6y_2 = 0 + 0 = 0.$ It's a solution. Actually, following the same process, you can prove $C_1y_1 + C_2y_2$ should be solution.)

b). It's inhomogeneous. And the sum of coefficients is not 1. It's not a solution.

(Generally, you can see $(C_1y_1 + C_2y_2)'' - 5(C_1y_1 + C_2y_2)' + 6 =$

$$C_1(y_1'' - 5y_1') + C_2(y_2'' - 5y_2') + 6 = -6C_1 - 6C_2 + 6 = 6(1 - C_1 - C_2)$$

Note: You can't solve it by solving $r^2 - 5r + 6 = 0$ because we have 6 instead of 6y!

Bonus 1: If I tell you that two solutions to the equation $x^2y'' - 5xy' + 9y = 0$ are of the type $y_1 = x^r$ and $y_2 = x^r \ln x$ (here, the two r's are the same), which are obviously linearly independent, find r and write out the general solution. (2 pts)

Ans: You can check that it's linear and homogeneous. I have told you that the two r's are the same. Since the former is simpler, we can plug it in to determine r.

 x^r is the solution means that if we plug it in, we can make the equation hold. $(x^r)' = rx^{r-1}$ and $(x^r)'' = r(r-1)x^{r-2}$. Thus $x^2r(r-1)x^{r-2} - 5xrx^{r-1} + 9x^r = 0$. We have

 $r^2 - 6r + 9 = 0$ and thus r = 3. We thus have two linearly independent solutions x^3 and $x^3 \ln x$. The general solution should be $y(x) = C_1 x^3 + C_2 x^3 \ln x$. Notice that

you can **NOT** solve the aux. eqn. $x^2r^2 - 5xr + 9 = 0$ because it's not with constant coefficients and it doesn't have solutions of the form e^{rx} .

Bonus 2: Solve y'' - 5y' + 6 = 0 (1 pt) and $2(yy')' - 10yy' + 6y^2 = 0$ (2 pts) Hint: Note that the first is inhomogeneous and the second is nonlinear! For the first, you can either do substitution u = y' or use the method you'll learn soon and for the second, use substitution $u = y^2$

Ans: For the first equation, as the hint says, we can let u=y' and then we have u'-5u+6=0. Somebody got this and couldn't solve it! This is the first order linear ODE we just learned! The first step, get the integrating factor. $\mu=e^{\int -5dx}$. We pick $\mu=e^{-5x}$. Then, we have $(e^{-5x}u)'=-6e^{-5x}$. We have $u(x)=e^{5x}(6e^{-5x}/5+C)=6/5+Ce^{5x}$. $y(x)=\int u(x)dx=6x/5+C_1e^{5x}+C_2$. Here $C_1=C/5$. Another method is to use the method for inhomogeneous equation. The complementary equation y''-5y'=0. $y_c=C_1e^{5x}+C_2$. Then find a particular solution. -6 is a polynomial. The left hand side has y' and doesn't have y. We can try $y_p=Ax+B$. Then A=6/5, B=0. The final answer is the same.

For the second, $u=y^2$ and then u'=2yy'. Hence the equation becomes u''-5u'+6u=0 and we have $u(x)=C_1e^{2x}+C_2e^{3x}$. Then $y(x)=\pm\sqrt{C_1e^{2x}+C_2e^{3x}}$