Answer to Quiz 7

By Lei Mar 23, 2011

1. Find the general solutions:
a) $y^{\prime \prime}-y^{\prime}-12 y=0(2 \mathrm{pts})$
b). $y^{\prime \prime}+2 y^{\prime}+4 y=0(3 \mathrm{pts})$

Ans: They are both homogeneous equations with constant coefficients. We can write out the auxiliary equations first and solve.
a). $r^{2}-r-12=0$ and we have $r=4,-3$. Two different real roots. $y(x)=C_{1} e^{4 x}+C_{2} e^{-3 x}$.
b). $r^{2}+2 r+4=0$ and we have $r=-1 \pm \sqrt{3} i$. Two complex roots. $y(x)=e^{-x}\left(C_{1} \cos (\sqrt{3} x)+C_{2} \sin (\sqrt{3} x)\right)$
2. Find the unique solution to the following: (3 pts)
$y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y(0)=0, y^{\prime}(0)=1$
Ans: It's also a homogeneous equation with constant coefficients.
$r^{2}+4 r+4=0 .(r+2)^{2}=0$. One repeated root. General solution is
$y(x)=C_{1} e^{-2 x}+C_{2} x e^{-2 x}$.
$y(0)=C_{1}=0$ and thus $y(x)=C_{2} x e^{-2 x}$.
$y^{\prime}(x)=C_{2}\left(e^{-2 x}-2 x e^{-2 x}\right) \cdot y^{\prime}(0)=C_{2}=1 . y(x)=x e^{-2 x}$
3. a). If y_{1} and y_{2} are solutions to $y^{\prime \prime}-5 y^{\prime}+6 y=0$, how about $y_{1}+y_{2}$? (1 pt)
b). If y_{1} and y_{2} are solutions to $y^{\prime \prime}-5 y^{\prime}+6=0$, how about $y_{1}+y_{2}$? (1 pt)

Ans: a). It's homogeneous. We can know $y_{1}+y_{2}$ must be the solution. (You can prove like this:
$\left(y_{1}+y_{2}\right)^{\prime \prime}-5\left(y_{1}+y_{2}\right)^{\prime}+6\left(y_{1}+y_{2}\right)=y_{1}^{\prime \prime}-5 y_{1}^{\prime}+6 y_{1}+y_{2}^{\prime \prime}-5 y_{2}^{\prime}+6 y_{2}=0+0=0$. It's a solution. Actually, following the same process, you can prove $C_{1} y_{1}+C_{2} y_{2}$ should be solution.)
b). It's inhomogeneous. And the sum of coefficients is not 1. It's not a solution.
(Generally, you can see $\left(C_{1} y_{1}+C_{2} y_{2}\right)^{\prime \prime}-5\left(C_{1} y_{1}+C_{2} y_{2}\right)^{\prime}+6=$
$\left.C_{1}\left(y_{1}^{\prime \prime}-5 y_{1}^{\prime}\right)+C_{2}\left(y_{2}^{\prime \prime}-5 y_{2}^{\prime}\right)+6=-6 C_{1}-6 C_{2}+6=6\left(1-C_{1}-C_{2}\right)\right)$
Note: You can't solve it by solving $r^{2}-5 r+6=0$ because we have 6 instead of $6 y$!
Bonus 1: If I tell you that two solutions to the equation $x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0$ are of the type $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln x$ (here, the two r 's are the same), which are obviously linearly independent, find r and write out the general solution. (2 pts)

Ans: You can check that it's linear and homogeneous. I have told you that the two r 's are the same. Since the former is simpler, we can plug it in to determine r.
x^{r} is the solution means that if we plug it in, we can make the equation hold. $\left(x^{r}\right)^{\prime}=r x^{r-1}$ and $\left(x^{r}\right)^{\prime \prime}=r(r-1) x^{r-2}$. Thus $x^{2} r(r-1) x^{r-2}-5 x r x^{r-1}+9 x^{r}=0$. We have $r^{2}-6 r+9=0$ and thus $r=3$. We thus have two linearly independent solutions x^{3} and $x^{3} \ln x$. The general solution should be $y(x)=C_{1} x^{3}+C_{2} x^{3} \ln x$. Notice that
you can NOT solve the aux. eqn. $x^{2} r^{2}-5 x r+9=0$ because it's not with constant coefficients and it doesn't have solutions of the form $e^{r x}$.

Bonus 2: Solve $y^{\prime \prime}-5 y^{\prime}+6=0(1 \mathrm{pt})$ and $2\left(y y^{\prime}\right)^{\prime}-10 y y^{\prime}+6 y^{2}=0(2 \mathrm{pts})$
Hint: Note that the first is inhomogeneous and the second is nonlinear! For the first, you can either do substitution $u=y^{\prime}$ or use the method you'll learn soon and for the second, use substitution $u=y^{2}$

Ans: For the first equation, as the hint says, we can let $u=y^{\prime}$ and then we have $u^{\prime}-5 u+6=0$. Somebody got this and couldn't solve it! This is the first order linear ODE we just learned! The first step, get the integrating factor. $\mu=e^{\int-5 d x}$. We pick $\mu=e^{-5 x}$. Then, we have $\left(e^{-5 x} u\right)^{\prime}=-6 e^{-5 x}$. We have $u(x)=e^{5 x}\left(6 e^{-5 x} / 5+C\right)=6 / 5+C e^{5 x}$. $y(x)=\int u(x) d x=6 x / 5+C_{1} e^{5 x}+C_{2}$. Here $C_{1}=C / 5$.
Another method is to use the method for inhomogeneous equation. The complementary equation $y^{\prime \prime}-5 y^{\prime}=0$. $y_{c}=C_{1} e^{5 x}+C_{2}$. Then find a particular solution. -6 is a polynomial. The left hand side has y^{\prime} and doesn't have y. We can try $y_{p}=A x+B$. Then $A=6 / 5, B=0$. The final answer is the same.

For the second, $u=y^{2}$ and then $u^{\prime}=2 y y^{\prime}$. Hence the equation becomes $u^{\prime \prime}-5 u^{\prime}+6 u=0$ and we have $u(x)=C_{1} e^{2 x}+C_{2} e^{3 x}$. Then $y(x)= \pm \sqrt{C_{1} e^{2 x}+C_{2} e^{3 x}}$

