1. Solve the ordinary differential equation $\frac{dy}{dx} = e^{x-y}$ (3 pts).

Ans: $e^{x-y} = e^x e^{-y}$. It’s separable, and thus the solution can be got by:

\[\int e^{-y} dy = \int e^x dx \] and we have $e^y = e^x + C$.

Note: $y = \ln(e^x + C)$ is neither equal to $\ln e^x + C = x + C$ nor equal to $\ln(e^x) \ln C = x \ln C$!!!

2. $y' + (\tan x)y = \cos^2 x$

a). Solve it. (3 pts) b). Check what you get in a) is the solution. (1 pt)

Ans: This equation is linear, and it’s already of the standard form since the coefficient of y' is 1.

Integrating factor is $\mu(x) = e^{\int \tan x dx}$. Since $\int \tan x dx = \ln |\sec x| + C$, and we can only pick one integrating factor. Let’s pick $\mu(x) = \sec x$. Then $\sec x (y' + (\tan x)y) = \sec x \cos^2 x$. Then, we have $(\sec xy)' = \cos x$. Integrate it and we get $\sec xy = \sin x + C$. The solution should be $y(x) = \sin x \cos x + C \cos x$.

b). We can see $y'(x) = \cos^2 x - \sin^2 x - C \sin x$ and $(\tan x)y = \sin^2 x + C \sin x$. It’s clear now that $y' + \tan xy = \cos^2 x$.

3. $xdy + x^4 e^{-x} dx = 3ydx$ (Hint: $y' = dy/dx$) (2+1 pts)

a). If I tell you this is first order linear equation, get the standard form and solve it.

b). If $y_1(x)$ is the solution satisfying $\lim_{x \to +\infty} y(x)$ exists, find $y_1(x)$ and get the limit.

Ans: a). By the hint, we can divide by dx first to get $xy' + x^4 e^{-x} = 3y$, which is equivalent to $xy' - 3y + x^4 e^{-x} = 0$.

It’s not of standard form. We can divide by x to get the standard form

\[y' - \frac{3}{x} y = -x^3 e^{-x} \]

Integrating factor $\mu(x) = e^{\int -3/x dx}$ and we can pick $\mu(x) = e^{-3 \ln x} = x^{-3} = 1/x^3$.

Then $\frac{1}{x^3}(y' - \frac{3}{x} y) = -e^{-x}$ which is $(x^{-3} y)' = -e^{-x}$. We have

\[y = x^3 (e^{-x} + C) = x^3 e^{-x} + Cx^3 \]

b). By L’Hopital’s rule, $\lim_{x \to +\infty} x^3 e^{-x} = \lim_{x \to +\infty} \frac{x^3}{e^x} = 0$ and if the limit wants to exist, C must to be zero. Hence $y_1(x) = x^3 e^{-x}$ and the limit is 0.

(Bonus) In the picture, the electromotive force $U_0 = 1V$, the capacitance $C = 1F$ and the resistance $R = 1\Omega$. At first, the switch was on the left and there was no current. At $t = 0$, we turned the switch to the right.

1). It’s known that the charge q on the capacitance and the voltage u_c satisfy $q = Cu_c$. We also know the current $i = \frac{dq}{dt}$. Ohm’s Law: the voltage on the resistance is iR. Kirchhoff’s law: $u_c + iR = 0$. The charge on the capacitance couldn’t change immediately and thus the voltage wouldn’t change at $t = 0$. Give out the differential equation that u_c satisfies and the initial condition $u_c(0)$. (2 pts)

2). Find the time when the voltage is $e^{-1}V$. (1 pt)
Ans: 1). By the equations I gave you:
\[u_c = -iR = -R \frac{dq}{dt} = -R \frac{d(Cu_c)}{dt} = -RC \frac{du_c}{dt}. \]
Before we turned the switch, the voltage was \(U_0 \) and I told you that the voltage didn’t change and thus \(u_c(0) = 1 \) V.

2). Plugging in \(R = 1 \), \(C = 1 \) and \(u_c(0) = 1 \) V, we have \(u_c' = -u_c \) and thus
\[u_c(t) = u_c(0)e^{-t} = e^{-t}. \]
Thus the time is \(\tau = 1(s) \).

Note: Here, \(\Omega, V \) and \(F \) are units, just like \(m \) (meter) in length and \(s \) (second) in time. There is no need to put them in equations. Besides, we have \(1 \Omega \cdot F = 1s \). You can check by the dimensional analysis.