Answer to Quiz 6

By Lei Mar 9, 2011

- 1. Solve the ordinary differential equation $\frac{dy}{dx} = e^{x-y}$ (3 pts) Ans: $e^{x-y} = e^x e^{-y}$. It's separable, and thus the solution can be got by: $\int \frac{1}{e^{-y}} dy = \int e^x dx$ and we have $e^y = e^x + C$. Note: $y = \ln(e^x + C)$ is neither equal to $\ln e^x + C = x + C$ nor equal to $\ln(e^x) \ln C = x \ln C!!!$
- 2. $y' + (\tan x)y = \cos^2 x$ a). Solve it. (3 pts) b). Check what you get in a) is the solution. (1 pt) Ans: This equation is linear, and it's already of the standard form since the coefficient of y' is 1. Integrating factor is $\mu(x) = e^{\int \tan x dx}$. Since $\int \tan x dx = \ln|\sec x| + C$, and we can only pick one integrating factor. Let's pick $\mu(x) = \sec x$. Then $\sec x(y' + (\tan x)y) = \sec x \cos^2 x$. Then, we have $(\sec xy)' = \cos x$. Integrate it and we get $\sec xy = \sin x + C$. The solution should be $y(x) = \sin x \cos x + C \cos x$. b). We can see $y'(x) = \cos^2 x - \sin^2 x - C \sin x$ and $(\tan x)y = \sin^2 x + C \sin x$. It's clear now that $y' + \tan xy = \cos^2 x$.
- 3. $xdy + x^4e^{-x}dx = 3ydx$ (Hint: y' = dy/dx) (2+1 pts)
 - a). If I tell you this is first order linear equation, get the standard form and solve it.
 - b). If $y_1(x)$ is the solution satisfying $\lim_{x\to+\infty}y(x)$ exists, find $y_1(x)$ and get the limit.

Ans:a). By the hint, we can divide by dx first to get $xy' + x^4e^{-x} = 3y$, which is equivalent to $xy' - 3y + x^4e^{-x} = 0$.

It's not of standard form. We can divide by x to get the standard form $y' - \frac{3}{x}y = -x^3e^{-x}$

Integrating factor $\mu(x) = e^{\int -3/x dx}$ and we can pick $\mu(x) = e^{-3 \ln x} = x^{-3} = 1/x^3$.

Then $\frac{1}{x^3}(y'-\frac{3}{x}y)=-e^{-x}$ which is $(x^{-3}y)'=-e^{-x}$. We have $y=x^3(e^{-x}+C)=x^3e^{-x}+Cx^3$ b). By L'Hopital's rule, $\lim_{x\to+\infty}x^3e^{-x}=\lim_{x\to+\infty}\frac{x^3}{e^x}=0$ and if the limit wants to exist, C must to be zero. Hence $y_1(x)=x^3e^{-x}$ and the limit is 0

(Bonus) In the picture, the electromotive force $U_0 = 1V$, the capacitance C = 1F and the resistance $R=1\Omega$. At first, the switch was on the left and there was no current. At t=0, we turned the switch to the right.

- 1). It's known that the charge q on the capacitance and the voltage u_c satisfy $q = Cu_c$. We also know the current $i = \frac{dq}{dt}$. Ohm's Law: the voltage on the resistance is iR. Kirchhoff's law: $u_c + iR = 0$. The charge on the capacitance couldn't change immediately and thus the voltage wouldn't change at t=0. Give out the differential equation that u_c satisfies and the initial condition $u_c(0)$. (2 pts)
- 2). Find the time when the voltage is $e^{-1}V$. (1 pt)

- Ans: 1). By the equations I gave you: $u_c = -iR = -Ri = -R\frac{dq}{dt} = -R\frac{d(Cu_c)}{dt} = -RC\frac{du_c}{dt}$. Before we turned the switch, the voltage was U_0 and I told you that the voltage didn't change and thus $u_c(0) = 1V$.
- 2). Plugging in R = 1, C = 1 and $u_c(0) = 1V$, we have $u'_c = -u_c$ and thus $u_c(t) = u_c(0)e^{-t} = e^{-t}$. Thus the time is $\tau = 1(s)$.

Note: Here, Ω , V and F are units, just like m(meter) in length and s(second) in time. There is no need to put them in equations. Besides, we have $1\Omega \cdot F = 1s$. You can check by the dimensional analysis.