Answer to Quiz 6

By Lei Mar 9, 2011

1. Solve the ordinary differential equation $\frac{d y}{d x}=e^{x-y}$ (3 pts)

Ans: $e^{x-y}=e^{x} e^{-y}$. It's separable, and thus the solution can be got by: $\int \frac{1}{e^{-y}} d y=\int e^{x} d x$ and we have $e^{y}=e^{x}+C$.
Note: $y=\ln \left(e^{x}+C\right)$ is neither equal to $\ln e^{x}+C=x+C$ nor equal to $\ln \left(e^{x}\right) \ln C=x \ln C!!!$
2. $y^{\prime}+(\tan x) y=\cos ^{2} x$
a). Solve it. (3 pts) b). Check what you get in a) is the solution. (1 pt)

Ans: This equation is linear, and it's already of the standard form since the coefficient of y^{\prime} is 1 .
Integrating factor is $\mu(x)=e^{\int \tan x d x}$. Since $\int \tan x d x=\ln |\sec x|+C$, and we can only pick one integrating factor. Let's pick $\mu(x)=\sec x$. Then
$\sec x\left(y^{\prime}+(\tan x) y\right)=\sec x \cos ^{2} x$. Then, we have $(\sec x y)^{\prime}=\cos x$. Integrate it and we get $\sec x y=\sin x+C$. The solution should be $y(x)=\sin x \cos x+C \cos x$.
b). We can see $y^{\prime}(x)=\cos ^{2} x-\sin ^{2} x-C \sin x$ and $(\tan x) y=\sin ^{2} x+C \sin x$. It's clear now that $y^{\prime}+\tan x y=\cos ^{2} x$.
3. $x d y+x^{4} e^{-x} d x=3 y d x\left(\right.$ Hint: $\left.y^{\prime}=d y / d x\right)(2+1 \mathrm{pts})$
a). If I tell you this is first order linear equation, get the standard form and solve it. b). If $y_{1}(x)$ is the solution satisfying $\lim _{x \rightarrow+\infty} y(x)$ exists, find $y_{1}(x)$ and get the limit.

Ans:a). By the hint, we can divide by $d x$ first to get $x y^{\prime}+x^{4} e^{-x}=3 y$, which is equivalent to $x y^{\prime}-3 y+x^{4} e^{-x}=0$.
It's not of standard form. We can divide by x to get the standard form
$y^{\prime}-\frac{3}{x} y=-x^{3} e^{-x}$
Integrating factor $\mu(x)=e^{\int-3 / x d x}$ and we can pick $\mu(x)=e^{-3 \ln x}=x^{-3}=1 / x^{3}$.
Then $\frac{1}{x^{3}}\left(y^{\prime}-\frac{3}{x} y\right)=-e^{-x}$ which is $\left(x^{-3} y\right)^{\prime}=-e^{-x}$. We have
$y=x^{3}\left(e^{-x}+C\right)=x^{3} e^{-x}+C x^{3}$
b). By L'Hopital's rule, $\lim _{x \rightarrow+\infty} x^{3} e^{-x}=\lim _{x \rightarrow+\infty} \frac{x^{3}}{e^{x}}=0$ and if the limit wants to exist, C must to be zero. Hence $y_{1}(x)=x^{3} e^{-x}$ and the limit is 0
(Bonus) In the picture, the electromotive force $U_{0}=1 V$, the capacitance $C=1 F$ and the resistance $R=1 \Omega$. At first, the switch was on the left and there was no current. At $t=0$, we turned the switch to the right.
1). It's known that the charge q on the capacitance and the voltage u_{c} satisfy $q=C u_{c}$. We also know the current $i=\frac{d q}{d t}$. Ohm's Law: the voltage on the resistance is $i R$. Kirchhoff's law: $u_{c}+i R=0$. The charge on the capacitance couldn't change immediately and thus the voltage wouldn't change at $t=0$. Give out the differential equation that u_{c} satisfies and the initial condition $u_{c}(0)$. (2 pts)
$2)$. Find the time when the voltage is $e^{-1} V$. (1 pt)

Ans: 1). By the equations I gave you: $u_{c}=-i R=-R i=-R \frac{d q}{d t}=-R \frac{d\left(C u_{c}\right)}{d t}=-R C \frac{d u_{c}}{d t}$. Before we turned the switch, the voltage was U_{0} and I told you that the voltage didn't change and thus $u_{c}(0)=1 V$.
2). Plugging in $R=1, C=1$ and $u_{c}(0)=1 V$, we have $u_{c}^{\prime}=-u_{c}$ and thus $u_{c}(t)=u_{c}(0) e^{-t}=e^{-t}$. Thus the time is $\tau=1(s)$.
Note: Here, Ω, V and F are units, just like m (meter) in length and s (second) in time.
There is no need to put them in equations. Besides, we have $1 \Omega \cdot F=1 \mathrm{~s}$. You can check by the dimensional analysis.

