Answer to Quiz 5

By Lei Mar 2, 2011

1. Express $\frac{1+i \sqrt{3}}{1-i \sqrt{3}}$ as $r e^{i \theta}$ where $r>0$ and θ is real. Draw the Argand diagram. (4 pts) Ans: Two ways. The first general way is to multiply the conjugate of the denominator on the top and on the bottom at the same time.
It will be: $\frac{1+i \sqrt{3}}{1-i \sqrt{3}}=\frac{(1+i \sqrt{3})(1+i \sqrt{3})}{(1-i \sqrt{3})(1+i \sqrt{3})}=\frac{1+2 i \sqrt{3}+(i \sqrt{3})^{2}}{1-(i \sqrt{3})^{2}}=\frac{-2+i 2 \sqrt{3}}{4}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$.
$r=\sqrt{(-1 / 2)^{2}+(\sqrt{3} / 2)^{2}}=1$ and draw the picture, you'll find $\theta=2 \pi / 3$. Answer is $e^{i 2 \pi / 3}$
The other way is to express the numberater as $r_{1} e^{i \theta_{1}}$ and the denominator as $r_{2} e^{i \theta_{2}}$. Then, it'll be $\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}$. It's not hard to find $1+i \sqrt{3}=2 e^{i \pi / 3}$ and $1-i \sqrt{3}=2 e^{-i \pi / 3}$. Final answer is the same.
2. Find the three complex cube roots of $-1 .(3 \mathrm{pts})$

Ans: Generally, if $z=a+i b=r e^{i \theta}$. Suppose the n-the roots are $s e^{i \alpha}$. Then $s^{n} e^{i n \alpha}=r e^{i \theta}$. Take the absolute values on both sides, we'll have $s^{n}=r$. Then
$e^{i n \alpha}=e^{i \theta}$. Hence, $n \alpha=\theta+2 k \pi$. We then know that the roots are $r^{1 / n} e^{i(\theta+2 k \pi) / n}$. We then can see that if $k_{1}=k_{2}+2 n \pi$, they'll give the same root, so we only need to choose $0 \leq k \leq n-1$.
For this problem, $r=\sqrt{(-1)^{2}+0^{2}}=1$. $\theta=\pi$ by the picture. Then the roots are $e^{i(\pi+2 k \pi) / 3}$. $k=0$ gives $e^{i \pi / 3}=1 / 2+i \sqrt{3} / 2 . k=1$ gives -1 and $k=2$ gives $1 / 2-i \sqrt{3} / 2$
3. Prove $\sin (2 \theta)=2 \sin \theta \cos \theta, \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$ by De Moivre's Theorem. (3 pts)

Ans: $(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$, which is obviously true by Euler's identity. This equation is called the De Moivre's Theorem.
Take $n=2$, and we'll have $\cos (2 \theta)+i \sin (2 \theta)=(\cos \theta+i \sin \theta)^{2}=\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+i 2 \sin \theta \cos \theta$. Compare the real parts and imaginary parts on both sides and we can get what we want.

Bonus1: True or false? If x is real, $-1 \leq \cos x \leq 1$. If x is complex, $-1 \leq \cos x \leq 1$ (2 pts). Calculate $\cos (i)(1 \mathrm{pt})$
Ans: If x is real, it's true. You can see this by the graph or by the difinition of function $\cos x$. If x is complex, it's not true. The followed is an example.
$\cos i=\left(e^{i i}+e^{-i i}\right) / 2=\left(e^{-1}+e\right) / 2>1$. Generally, the cosine function of a complex number is complex, which can't be compared with -1 and 1 .

Bonus2: Give an example that e^{z} can be negative if z is a complex number.(1 pt) Prove e^{z} is never zero if z is complex.(Hint: Assume $z=a+b i$) (2 pts)
Ans: Using Euler's identity, we can let $z=i \pi$ to give the first example. We know for real x, e^{x} is always positive. For complex, this is not true.
$z=a+b i, e^{z}=e^{a} * e^{i b}=e^{a}(\cos b+i \sin b) . e^{a}>0$ and the second part is not zero, because the absolute value is 1 . The product thus can't be 0 . Actually e^{z} can achieve any complex number except 0 .(0 is called the Picard exception value)

