Answer to Quiz 4

By Lei Feb 23, 2011

1. Write out the Taylor series about $a=0$ for any two (no need to explain)(4 pts):
$\bullet \cos x \quad \bullet \sin x \quad \bullet e^{x} \quad \bullet \ln (1+x) \quad \bullet \frac{1}{1-x}$
Ans: Please refer to the book. What I want to mention here is that we can get the expansion for $\ln (1+x)$ by integrating $\frac{1}{1+x}=\sum_{n=0}^{\infty}(-x)^{n}$
2. Find the Taylor series of $f(x)=\frac{2+x}{1-x}$ about $a=0$ (3 pts)

Ans: We can do like this: $f(x)=\frac{2+x}{1-x}=-1+\frac{3}{1-x}=-1+3 \sum_{n=0}^{\infty} x^{n}=2+\sum_{n=1}^{\infty} 3 x^{n}$ Besides, you can calculate the derivatives. $f^{\prime}(x)=\frac{3}{(1-x)^{2}}$ and thus generally, $f^{(n)}(x)=\frac{3 * n!}{(1-x)^{n}}$.
3. Estimate the error if we use $p(x)=1+x / 2$ to approximate $f(x)=\sqrt{1+x}$ when $|x|<0.01$ (3 pts)
Ans: You can check that $f^{\prime}(x)=\frac{1}{2}(1+x)^{-1 / 2}, f^{\prime \prime}(x)=-\frac{1}{4}(1+x)^{-3 / 2}$. Hnece, $f(0)=1, f^{\prime}(0)=1 / 2, f^{\prime \prime}(0)=-1 / 4$. We can see clearly that $p(x)$ is $T_{1}^{0} f(x)$. Thus, the error is $R_{1}(x)=f(x)-T_{1} f(x)=\frac{f^{(2)}(c)}{2!} x^{2}$, where c is between 0 and x.
Notice that $|x|<0.01$ (Not the error is less than 0.01 !), and x can be negative, we conclude that $-0.01<c<0.01$. Then $\left|f^{\prime \prime}(c)\right|=\left|\frac{1}{(1+c)^{3 / 2}}\right|<\frac{1}{0.99^{3 / 2}}$. We have \mid error $\left|=\left|R_{1}(x)\right|<\frac{1}{8} * \frac{1}{0.99^{3 / 2}} * 0.01^{2}\right.$

Bonus: Find the Maclaurin series for $f(x)=\int_{0}^{x} t^{2} e^{2 t^{2}} d t(2 \mathrm{pts})$
Ans: $t^{2} e^{2 t^{2}}=t^{2} \sum_{n=0}^{\infty} \frac{\left(2 t^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{2^{n} t^{2 n+2}}{n!}$.
Then $f(x)=\sum_{n=0}^{\infty} \int_{0}^{x} \frac{2^{n} t^{2 n+2}}{n!} d t=\sum_{n=0}^{\infty} \frac{2^{n}}{(2 n+3) n!} x^{2 n+3}$

