Keys to Quiz3

By Lei February 9, 2011

1. Calculate the sums of the following two:
1). $\sum_{n=0}^{\infty}(-1)^{n} \frac{5}{4^{n}}$ (3 pts)

Ans: You can check that $a_{n+1} / a_{n}=-\frac{1}{4}$, which is a constant. Thus this series is a geometric series. The multiplier is exactly $r=-\frac{1}{4}$. We also have $|r|<1$. The first term is 5 . Then the sum should be $S=\frac{f \text { irst }}{1-r}=\frac{5}{1-(-1 / 4)}=4$
Attention: Some may notice that this is also a convergent alternating series. Yes, it is! However, the alternating series test only tells us that it converges, but it can't tell us what the sum is.
2). $\sum_{n=1}^{\infty}(\sqrt[n]{n}-\sqrt[n+1]{n+1})(2 \mathrm{pts})$

Ans: This series is obviously telescoping series. The n-th partial sum is:
$S_{n}=(1-\sqrt{2})+(\sqrt{2}-\sqrt[3]{3})+\ldots+(\sqrt[n]{n}-\sqrt[n+1]{n+1})=1-\sqrt[n+1]{n+1}$.
Taking the limit and using $\lim _{n \rightarrow \infty} n^{1 / n}=1$, we have $S=1-1=0$
2. Determine whether the serieses converge or diverge and give your reasons:

1) $\sum_{n=5}^{\infty} \cos \left(\frac{1}{n}\right)(2 \mathrm{pts})$
2) $\sum_{n=1}^{\infty} \frac{1}{n\left(1+\ln ^{2} n\right)}(3 \mathrm{pts})$

Ans: Given a series, the first thing is to use n -th term test for divergence.
1). $\lim _{n \rightarrow \infty} \cos (1 / n)=\cos 0=1$, which is not zero. The series diverges.
2). $\lim _{n \rightarrow \infty} a_{n}=0$. We can't have any conclusions. We must use other methods.

Since $f(x)=\frac{1}{x\left(1+\ln ^{2} x\right)}$ on $x>1$ is positive decreasing. We can use Integral test. The corresponding integral is:
$\int_{1}^{\infty} \frac{1}{x\left(1+\ln ^{2} x\right)} d x$. Use substituion $u=\ln x$, we have $\int_{0}^{\infty} \frac{1}{1+u^{2}} d u=\pi / 2$. This improper integral converges and so does the series.

Bonus 1: Choose one for each of the following: A. $p \geq 1$ B. $p>1$ C. $p \leq 1$ D. $p<1$. 1). When does $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converge? (1 pt) 2). When does $\sum_{n=2}^{\infty} \frac{1}{n^{p} \ln ^{2} n}$ converge? (1 pt) Ans:1) Use the integral test, we can determine easily that the anwser is B.
2). If $p>1$, we know that $\frac{1}{n^{p} \ln ^{2} n}<\frac{1}{n^{p}}$ for $n>3$ and by the direct comparison test, it converges.
If $p=1$, use the integral test, we know it also converges.
If $p<1$, we must use other methods. Notice that as for the speeds of going to infinity, we have $(\ln n)^{q} \ll n^{r} \ll a^{n}(a>1) \ll n!\ll n^{n} .(q>0, r>0)$. I mean we have $\lim _{n \rightarrow \infty} \frac{(\ln n)^{q}}{n^{r}}=0$ for any $q>0, r>0$. We then rewrite $\frac{1}{n^{p} \ln ^{2} n}=\frac{1}{n^{(p+1) / 2}} \frac{n^{(1-p) / 2}}{\ln ^{2} n}$. Since $(p+1) / 2<1$ and $(1-p) / 2>0$, we have $\lim _{n \rightarrow \infty} \frac{\ln ^{2} n}{n^{(1-p) / 2}}=0$ and thus for large n , we have $\frac{n^{(1-p) / 2}}{\ln ^{2} n}>1$. Then, for these big enough n , we have $\frac{1}{n^{p} \ln ^{2} n}>\frac{1}{n^{(p+1) / 2}}$. The sum of the latter is part of the p-series with the index smaller than 1, and hence it diverges. By comparison test, the former also diverges. The answer is A.

Bonus 2: If I tell you that $u_{n}=\frac{n+5}{n+3}$ is positive and decreasing, does the AST(Alternating Series Test) apply for $\sum_{n=1}^{\infty}(-1)^{n} \frac{n+5}{n+3}$? Why? Does this series converge? (2 pts)
Ans: The AST doesn't apply here, because the positive part doesn't go to zero. This series doesn't converge because the n-th term doesn't go to zero.

