Keys to Quiz2

By Lei February 2, 2011

1. $\int \frac{x^{4}}{x^{2}-1} \mathrm{~d} x$ (5 pts)

Ans: Since $\operatorname{deg}\left(x^{4}\right)=4, \operatorname{deg}\left(x^{2}-1\right)=2$ and $4>2$, we must use long division to reduce this improper fraction to a polynomial plus a proper fraction. Only the proper fraction has a partial fraction expression. Using long division, we have
$\frac{x^{4}}{x^{2}-1}=x^{2}+1+\frac{1}{x^{2}-1}$. Then let $\frac{1}{x^{2}-1}=\frac{A}{x-1}+\frac{B}{x+1}$ and we can then determine
$A=1 / 2, B=-1 / 2$. The integral then becomes:
$\int\left(x^{2}+1+\frac{1}{2} \frac{1}{x-1}-\frac{1}{2} \frac{1}{x+1}\right) d x=\frac{1}{3} x^{3}+x+\frac{1}{2} \ln |x-1|-\frac{1}{2} \ln |x+1|+C$
2. $\int_{\sqrt{3}}^{+\infty} \frac{x^{2}-x+1}{(x-1)^{2}\left(x^{2}+1\right)} \mathrm{d} x$ (2 pts)

Ans: This problem is quite hard, and thus I only let it have 2 points.
We can check that the degree of the numerater is 2 and the degree of the denominator is 4 , and thus this fraction is already proper. We then have the following partial fraction expression:
$\frac{x^{2}-x+1}{(x-1)^{2}\left(x^{2}+1\right)}=\frac{A}{(x-1)^{2}}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+1}$. Multiplying the denominator, we have:
$x^{2}-x+1=A\left(x^{2}+1\right)+B(x-1)\left(x^{2}+1\right)+(C x+D)(x-1)^{2}$.
Choose a good x , and we let $x=1: 1=2 A$. We have $A=1 / 2$.
Then compare the coefficients or let x to be $0,-1,2$ or something else. Here, I'll compare the coefficients:
$1: 1=A-B+D . x^{3}: 0=B+C . x^{2}: 1=A-B-2 C+D$. Since we know $A=1 / 2$ and we have three equations together with three unknowns. We can then solve it now: $A=D=1 / 2, B=C=0$. Then we have:
$\int_{\sqrt{3}}^{+\infty} \frac{x^{2}-x+1}{(x-1)^{2}\left(x^{2}+1\right)} \mathrm{d} x=\int_{\sqrt{3}}^{+\infty}\left(\frac{1 / 2}{(x-1)^{2}}+\frac{1 / 2}{x^{2}+1}\right) d x=\lim _{b \rightarrow \infty} \int_{\sqrt{3}}^{b}\left(\frac{1 / 2}{(x-1)^{2}}+\frac{1 / 2}{x^{2}+1}\right) d x=$
$\left.\lim _{b \rightarrow \infty}\left(-\frac{1}{2} \frac{1}{x-1}+\frac{1}{2} \tan ^{-1}(x)\right)\right|_{\sqrt{3}} ^{b}=\frac{1}{2} \frac{1}{\sqrt{3}-1}+\frac{1}{2}\left(\lim _{b \rightarrow \infty} \tan ^{-1}(b)-\tan ^{-1}(\sqrt{3})\right)=\frac{\sqrt{3}+1}{4}+\frac{\pi}{12}$
3. Determine whether the improper integral converges or diverges: $\int_{1}^{\infty} \frac{d x}{2 x^{3}+\sin x}(3 \mathrm{pts})$ Ans: We can use comparison test to do. One is limit comparison test and one is direct comparison test. Here I'll use direct comparison test.
Notice that $-1 \leq \sin x \leq 1$. We have $\frac{1}{2 x^{3}+\sin x} \leq \frac{1}{2 x^{3}-1} \leq \frac{1}{x^{3}}$ since $x \geq 1$. Attention: we don't have $\frac{1}{2 x^{3}+\sin x} \leq \frac{1}{2 x^{3}}$!
Since $\int_{1}^{\infty} \frac{d x}{x^{3}}$ converges, we know the original integral converges by direct comparison test.

Bonus 1: For which α 's do the intergrals converge: $\int_{1}^{\infty} \frac{1}{x^{\alpha}} d x, \int_{0}^{1} \frac{1}{x^{\alpha}} d x, \int_{0}^{\infty} \frac{1}{x^{\alpha}} d x ?(3 \mathrm{pts})$ Ans:
For the first integral, it's of the first type. It is well defined everywhere. The only problem is the range is infinity. By definition, we have:
$\int_{1}^{\infty} \frac{1}{x^{\alpha}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{\alpha}} d x$. If $\alpha=1$, then it is $\lim _{b \rightarrow \infty} \ln b$ which diverges. If it is not 1, $\lim _{b \rightarrow \infty} \frac{1}{1-\alpha} b^{1-\alpha}-\frac{1}{1-\alpha}$. If we want the first term to have a finite limit, we must require $1-\alpha<0$, which means $\alpha>1$. We finally need $\alpha>1$.

For the second integral, if $\alpha \leq 0$, then it is normal definite integral and it's well defined. If $\alpha>0$, the function blows up around 0 . By definition, $\lim _{a \rightarrow 0^{+}} \int_{a}^{1} x^{-\alpha} d x$. If $\alpha=1$, it diverges since $\ln a$ goes to negative infinity as a goes to 0 from right. If it's not 1 , then it becomes $\lim _{a \rightarrow 0^{+}}\left(\frac{1}{1-\alpha}-\frac{1}{1-\alpha} a^{1-\alpha}\right)$. If we want the second term to be finite, we must require $1-\alpha>0$. We have $0<\alpha<1$. Together with the normal definite integral case, we have $\alpha<1$

For the third, it's a combination of the first two cases. The integral converges if and only if both of them converge. However, for any α, this can't be true.

Bonus 2: Converges or diverges $\int_{0}^{+\infty} x^{5} e^{-x^{2}} d x$? (2 pts)
Ans: We have $\lim _{x \rightarrow \infty} x^{n} e^{-x^{2}}=0$ for any n. Then if we choose $n=7$ and for large enough x, we have $x^{5} e^{-x^{2}}<1 / x^{2}$. By direct comparison test, this integral converges.
I didn't require you to get the integral. However, the result can be calculated accurately. Just do substituion $u=x^{2}$ and then apply integral by parts. Many of you did with this method.

