Answer to Quiz 10

By Lei Apr 20, 2011

1. Find the slope of the curve $x=t^{3}+t, y+2 t^{3}=2 x+t^{2}$ at $t=1$. (2') Get the tangent line there. (1^{\prime})
Ans: The slope is $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$. One way is to get the expression of $y(t)$:
$y=2 x+t^{2}-2 t^{3}=2\left(t^{3}+t\right)+t^{2}-2 t^{3}=2 t+t^{2}$. Thus $d y / d t=2+2 t$ and
$d x / d t=3 t^{2}+1$. Another method is to take the derivative directly:
$y^{\prime}(t)+6 t^{2}=2 x^{\prime}(t)+2 t$ and $x^{\prime}(t)=3 t^{2}+1$. No matter what way you use, plug in $t=1$, you'll get $x^{\prime}(1)=4$ and $y^{\prime}(1)=4$. At $t=1, x=1^{3}+1=2, y+2=2 x+1$, so $y=4+1-2=3$.
The line is thus $y-3=1 *(x-2)$, or alternatively, you can write the parametric equation $(x, y)=(2,3)+t(4,4)$.
2. The cycloid can be parametrized as $x=a(t-\sin t), y=a(1-\cos t)$. Find the area under one arch (and above x-axis) (2^{\prime}) and the length of one arch. (2^{\prime})
Ans: Just use the formula $A=\int_{t_{1}}^{t_{2}} y(t) x^{\prime}(t) d t$. We need to find t_{1} and t_{2}. Notice that at the ends of one arch, the y coordinates are both zero. Then letting
$a(1-\cos t)=0$, you'll have $\cos t=1$. You can determine that $t_{1}=0$ and $t_{2}=2 \pi$.
Thus $A=\int_{0}^{2 \pi}(a(1-\cos t) a(1-\cos t)) d t=a^{2} \int_{0}^{2 \pi}(1-\cos t)^{2} d t=$ $a^{2} \int_{0}^{2 \pi}\left(1-2 \cos t+\cos ^{2} t\right) d t=3 \pi a^{2}$. Notice that $\cos ^{2} t=\frac{1+\cos (2 t)}{2}$ so that you can calculate the third part.

As for the second question, we just need to evaluate $L=\int_{0}^{2 \pi} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t=$ $\int_{0}^{2 \pi} \sqrt{a^{2}\left(1-2 \cos t+\cos ^{2} t\right)+a^{2} \sin ^{2} t} d t=a \int_{0}^{2 \pi} \sqrt{2-2 \cos t} d t$. Then using $1-\cos t=2 \sin ^{2}(t / 2)$, you'll get the final answer as $a \int_{0}^{2 \pi} 2|\sin (t / 2)| d t=8 a$.
3. (a). Find Cartesian coordinate of $P(\sqrt{2}, \pi / 4)$ (in polar coordinate). Plot it. (2')
(b). Change the Cartesian equation into its equivalent polar equation: $y^{2}=4 x\left(1^{\prime}\right)$

Ans: (a). $x=r \cos \theta=\sqrt{2} \cos (\pi / 4)=\sqrt{2} * \frac{\sqrt{2}}{2}=1$ and $y=r \sin \theta=\sqrt{2} \frac{\sqrt{2}}{2}=1$. The Cartesian coordinate is $(1,1)$. Plotting it is easy to do.
(b). Plugging in $x=r \cos \theta$ and $y=r \sin \theta$, we'll have $(r \sin \theta)^{2}=4 r \cos \theta$. $r \sin ^{2} \theta=4 \cos \theta$. You can't divide anything now, because they may be zero.

Bonus 1:(a). Fill in the blanks (3^{\prime}):
$\int_{2}^{2} \sqrt{10 \cos ^{2} t+8 \sin ^{2} t} d t=\quad \int_{-1}^{1}\left(1+\frac{t}{\sqrt{10 \cos ^{2} t+8 \sin ^{2} t}}\right) d t=$ \qquad
If s is the arc length parameter, then $\int_{2}^{5} \sqrt{x^{\prime}(s)^{2}+y^{\prime}(s)^{2}} d s=$ \qquad
(b). The velocity vector for $x=x(t), y=y(t)$ is $\vec{v}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle$. Give a geometric explanation for the formula $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$. $\left(2^{\prime}\right)$

Ans:(a). For the first integral, notice that the lower limit and the upper limit are the same, so the integral must be 0 . Actually, it's impossible to get the accurate antiderivative of the integrand.
For the second integral, notice the result of $\int_{-1}^{1} d t=2$ and the second part is the integral of an odd function, so the answer is 2 .
For the third, just notice that the formula is used to calculate the arc length. Thus the answer should be the arc length between $s_{1}=2$ and $s_{2}=5$. However, s is already the arc length parameter, thus the length is $5-2=3$.
(b). We know the slope is the $\tan \theta$ value where θ is the angle between the tangent line and x-axis. However, the velocity vector is just parallel to the tangent line, thus $\tan \theta=(d y / d t) /(d x / d t)$

Bonus 2: Polar eqns: What's this curve called $r=\frac{6}{2+3 \cos \theta} ?\left(2^{\prime}\right)$ How about $r=2 \cos \theta$? (1^{\prime})
Ans: For the first eqn, $2 r+3 r \cos \theta=6$. Then $2 r=6-3 x$. Taking square, $4 r^{2}=9(2-x)^{2}$. $4\left(x^{2}+y^{2}\right)=9\left(x^{2}-4 x+4\right)$. Then $5 x^{2}-36 x-4 y^{2}+36=0$. The coefficient of x^{2} and y^{2} are of opposite signs and the set of points are nonempty. Thus it's a hyperbola.
For the second, $r^{2}=2 r \cos \theta$, and thus $x^{2}+y^{2}=2 x$. You'll find that it's a circle.

