An elementary proof of two formulas in trigonometry

By Lei, Sep. 7th
In the section today, I was asked why $1+\cos (x)=2 \cos ^{2}\left(\frac{x}{2}\right)$ and I wanted to prove $\cos (x)=$ $\cos ^{2}\left(\frac{x}{2}\right)-\sin ^{2}\left(\frac{x}{2}\right)$. However I was stuck that time. After the section, I immediately realized it was actually very direct. Below, I'll prove $\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)$ and $\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b)$ for $0 \leq a, b \leq \frac{\pi}{2}$.

As for the general case, they are just some corollaries of these two basic equations.
A.

First of all, if a or b is equal 0 or pi/2, the equations are obvious correct.
Now let's look at the other cases.
Let's look at the first one:

We have unit circle here, so $O B=\cos (\mathrm{b})$ and thus $\mathrm{OC}=\mathrm{OB}^{*} \cos (\mathrm{a})=\cos (\mathrm{b})^{*} \cos (\mathrm{a})$;
$E C=B D=A B^{*} \sin ($ angle $B A D)=A B^{*} \sin (a)=\sin (b) * \sin (a)$.
Hence $O E=O C-E C$, and this is actually $\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)$.

Let's look at the second one.

We have $A D=A B^{*} \cos (B A D)=A B^{*} \cos (a)=\sin (b) \cos (a)$ and $D E=B C=O B^{*} \sin (a)=\cos (b) * \sin (a)$.
Hence $\sin (a+b)=A E=D E+A D=\sin (a) \cos (b)+\cos (a) \sin (b)$.
B. For general a and b , we can use that $\sin (x)=\sin (x+2 k \pi), \cos (x)=\cos (x+2 k \pi) \cos (-$ $\mathrm{x})=\cos (\mathrm{x}), \sin (\pi-x)=\sin (x)$, and $\cos (\pi-x)=-\cos (x)$ etc to reduce them to the above cases. We can see that the two equations are also right.
$\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)$
$\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b)$
C. By replacing b as $-b$, we have:
$\cos (a-b)=\cos (a) \cos (b)+\sin (a) \sin (b)$
$\sin (a-b)=\sin (a) \cos (b)-\cos (a) \sin (b)$
D. We can also have from the above equations that:
$\cos (a) \cos (b)=[\cos (a+b)+\cos (a-b)] / 2$
$\sin (a) \sin (b)=[\cos (a-b)-\cos (a+b)] / 2$
$\sin (a) \cos (b)=[\sin (a+b)+\sin (a-b)] / 2$
$\cos (a) \sin (b)=[\sin (a+b-\sin (a-b)] / 2$
E. Let $a=b=x$, and we have:

$$
\begin{gathered}
\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x) \\
\sin (2 x)=2 \sin (x) \cos (x)
\end{gathered}
$$

