Math 222 Quiz 8

Nov. 4, 2010

Your Name:
Your Section:

Instructions: Time is 20 minutes and the total score is 10 points. There are bonus problems. To do well in Math, please read the textbook.

1. Solve the differential equation with initial value $y(1)=0: y^{\prime}-\frac{y}{x}=x+1$ (3 pts)
2. (a). Find the solution: $8 y^{\prime \prime}(t)+8 y^{\prime}(t)+2 y(t)=0$ and $y(0)=0, y^{\prime}(0)=1$ (4 pts) (b). Find the general solution to $y^{\prime \prime}+2 y^{\prime}+4 y=0 . y$ is a function of $x(3 \mathrm{pts})$

Bonus: Choose ANY ONE below: (4 pts)

- a). If y_{1} and y_{2} are solutions to $y^{\prime \prime}-5 y^{\prime}+6 y=0$, how about $y_{1}+y_{2}$? (1 pt). If the equation is $y^{\prime \prime}-5 y^{\prime}+6=0$, what's the answer? (1 pt)
b). If I tell you that two solutions to the equation $x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0$ are of the type $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln x$, which are obviously linearly independent, find r (1 pt) and write out the general solution (1 pt)
- Solve $2\left(y y^{\prime}\right)^{\prime}-10 y y^{\prime}+6 y^{2}=0(2 \mathrm{pts})$ and $y^{\prime \prime}-5 y^{\prime}+6=0(2 \mathrm{pts})$.

Hint: Both equations need substitution. For the second, you can regard y^{\prime} as a whole first and then solve y.

