Math 222 Quiz 5

October 7, 2010

Your Name:

Your Section:

Instructions: Time is 20 minutes and the total score is 10 points. For #2 and the extra problems (if you do), you **CAN'T** give only final answers, or you won't get points even if you are right, because they are mostly from homework.

- Choose ANY ONE of the two below.(2 points)

 Which one is zero? (Please Circle.)
 A. lim_{n→∞} n/(ln n)⁴
 B. lim_{n→∞} 100n³/e^{n/2}
 C. lim_{n→∞} n!/(2ⁿ)
 D. lim_{n→∞} nⁿ/n!
 When does ∑_{n=1} 1/n^p converge? (Circle one.)
 A. p ≥ 0
 B. p < 0
 C. p ≥ 1
 D. p > 1

 Find the limit of ANY ONE of the two from Homework 5. (2 pts)
- $a_n = (\frac{1}{n})^{1/(\ln n)} \qquad a_n = \sqrt[n]{n^2}$ 2). Find the **sum** of the Geometric Series from Homework 5: $\sum_{n=0}^{\infty} (\frac{2^{n+1}}{5^n}) (3 \text{ pts}) (\text{Pay attention to the sub-index})$ Use the Integral Test to decide when the series from Homework 5 converges: $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \quad (3 \text{ pts})$

(Bonus) Choose **ANY ONE** of the three below. (3pts) $\sum_{n=1}^{\infty}$

• Does
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n \ln n}}$$
 converge or not? (2 pts)
How about $\sum_{n=2}^{\infty} \frac{1}{n^{p} \ln n}$ (0
• Does $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n^{3}}$ converge or not? (2 pts)
How about $\sum_{n=1}^{\infty} \frac{(\ln n)^{q}}{n^{p}}$ (p > 1, q > 1)? (1 pt)
• Does $\frac{1}{1^{2}} + \frac{1}{2^{3}} + \frac{1}{3^{2}} + \frac{1}{4^{3}} + \ldots + \frac{1}{(2k-1)^{2}} + \frac{1}{(2k)^{3}} + \ldots$ converge? (1 pt)
 $\lim_{n \to \infty} \frac{\sin n}{n}$ (1 pt)
 $\lim_{n \to \infty} \frac{\sin(1/n)}{1/n}$ (1 pt)