Math 222 Quiz 11

Dec. 2, 2010

Your Name:
Your Section:

Instructions: Since we missed many topics, for this quiz, time is $\mathbf{3 0}$ minutes and the total score is $\mathbf{1 5}$ points. Wait until the last minute.

1. (a). $P(1,1,1), Q(2,1,3), R(3,-1,1)$. Find the area of the triangle determined by these three points and one unit vector perpendicular to this triangle. If the points are $P(1,1), Q(2,1), R(3,-1)$, find the area again. (4')
(b). $\mathbf{u}=2 \mathbf{i}+\mathbf{j}, \mathbf{v}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}, \mathbf{w}=\mathbf{i}+2 \mathbf{k}$. Find the triple scalar product $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ and the volume of the parallelepiped determined by these three vectors. $\left(2^{\prime}\right)$
2. $P(3,-2,1) L: x=1+2 t, y=2-t, z=3 t$. Find the line through P and parallel to L $\left(2^{\prime}\right)$, the distance beween P and $L\left(2^{\prime}\right)$, and the plane through P and perpendicular to $L\left(2^{\prime}\right)$.
3. Choose THREE of the following. Circle directly. No need to explain.If you answer more than three, I'll grade the first three you answered.(3')
(1). If $\angle A O B=\pi / 3$, the angle between $\overrightarrow{A O}$ and $\overrightarrow{O B}$ is: $(\pi / 3$ vs $2 \pi / 3)$
(2). Is $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ equal to $\mathbf{c} \cdot(\mathbf{b} \times \mathbf{a})$: (Yes vs No)
(3). If $\mathbf{u} \cdot \mathbf{v}_{\mathbf{1}}=\mathbf{u} \cdot \mathbf{v}_{\mathbf{2}}$, is $\mathbf{v}_{\mathbf{1}}=\mathbf{v}_{\mathbf{2}}$ right: (Yes vs No)
(4). If the relation in (3) is right for all \mathbf{u}, what's the answer: (Yes vs No)
(5). $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ is always the volume of the parallelepiped determined by the three vectors even if the determinant may be negative: (True vs False)
(6). $|\mathbf{a} \times \mathbf{b}|^{2}+|\mathbf{a} \cdot \mathbf{b}|^{2}$ equals: $\left(|\mathbf{a}+\mathbf{b}|^{2}\right.$ vs $\left.|\mathbf{a}|^{2}|\mathbf{b}|^{2}\right)$
