Keys to Quiz8

By Lei November 4, 2010

1. Solve the differential equation with initial value $y(1)=0: y^{\prime}-\frac{y}{x}=x+1$ (3 pts) Ans:First order, linear differential equation. It's of the standard form already. The coefficients are not continuous on R, but since I gave you $y(1)=0$, you only need to consider $x>0$.
Itegrating factor $\mu(x)=e^{\int-1 / x d x}$. We choose $\mu(x)=\frac{1}{x}$. Attention
$e^{-\ln x}=\left(e^{\ln x}\right)^{-1}=1 / x$, not $-x$!
Then multiplying the integrating factor, we have $\left(\frac{y}{x}\right)^{\prime}=1+\frac{1}{x}$. Integrate, and we have $y=x(x+\ln x+C)$.
$y(1)=0$ implies $C=-1$. Hence, $y(x)=x^{2}+x \ln x-x$
2. (a). Find the solution: $8 y^{\prime \prime}(t)+8 y^{\prime}(t)+2 y(t)=0$ and $y(0)=0, y^{\prime}(0)=1$ (4 pts)

Ans:It's the equation with constant coefficients.
The corresponding auxiliary equation is $8 r^{2}+8 r+2=0$, which has only one root $r=-1 / 2$.
The general solution $y(t)=C_{1} e^{-t / 2}+C_{2} t e^{-t / 2}$
$y(0)=0$ implies $C_{1}=0$ and then $y^{\prime}(0)=1$ implies $C_{2}=1$.
Attention: The variable is t not x.
(b). Find the general solution to $y^{\prime \prime}+2 y^{\prime}+4 y=0 . y$ is a function of $x(3 \mathrm{pts})$

Ans: This is your homework. The corresponding auxiliary equation is $r^{2}+2 r+4=0$ and the solution is $r_{1,2}=-1 \pm \sqrt{3} i$. Hence the general solution is
$y(x)=e^{-x}\left(C_{1} \cos (\sqrt{3} x)+C_{2} \sin (\sqrt{3} x)\right)$
Bonus: Choose ANY ONE below: (4 pts)

- a). If y_{1} and y_{2} are solutions to $y^{\prime \prime}-5 y^{\prime}+6 y=0$, how about $y_{1}+y_{2}$? (1 pt). If the equation is $y^{\prime \prime}-5 y^{\prime}+6=0$, what's the answer? ($1 \mathrm{pt} \mathrm{)}$
Ans:The first equation is linear and homogeneous, so $y_{1}+y_{2}$ is the solution. The second is inhomogeneous, so $y_{1}+y_{2}$ is not the solution. You can plug in to check.
b). If I tell you that two solutions to the equation $x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0$ are of the type $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln x$, which are obviously linearly independent, find $r(1 \mathrm{pt})$ and write out the general solution (1 pt)
Ans:Attention please, the equation is NOT with constant coefficients, so it doesn't have the auxiliary equation. Since I told you that x^{r} and $x^{r} \ln x$ are both solutions. You can plug in any one to determine the r. Plug x^{r} in, and you'll have $r(r-1) x^{r}-5 r x^{r}+9 x^{r}=0$ and $(r-3)^{2}=0$. Hence, $r=3$. Since they are independent, you'll have the general solution as $y(x)=C_{1} x^{3}+C_{2} x^{3} \ln x$
- Solve $2\left(y y^{\prime}\right)^{\prime}-10 y y^{\prime}+6 y^{2}=0(2 \mathrm{pts})$ and $y^{\prime \prime}-5 y^{\prime}+6=0(2 \mathrm{pts})$.

Hint: Both equations need substitution. For the second, you can regard y^{\prime} as a whole
first and then solve y.
Ans: The first equation needs $u=y^{2}$ and you'll get $u^{\prime \prime}-5 u^{\prime}+6 u=0$, which is easy to solve. The second needs $u=y^{\prime}$ and you'll get $u^{\prime}-5 u+6=0$, which is also easy to solve. Then $y=\int u d x$. For the second, since you have learned the inhomogeneous equation, you can use the method you have learned to solve now.

