Keys to Quiz6

By Lei October 21, 2010

1. Find the radius of convergence for the series $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{\sqrt{n} 3^{n}}$. For what values of x does the series converge? (4 pts)
Ans: Using the ratio test, we can find that the ratio is $\frac{a_{n+1}}{a_{n}}=\frac{(x-1) n \sqrt{n}}{3(n+1) \sqrt{n+1}} \rightarrow \frac{x-1}{3}$. We then let $\left|\frac{(x-1)}{3}\right|<1$ and we can get $|x-1|<3$, which implies $R=3 .-2<x<4$. However, we must check the endpoints now. Plugging them in, we have serieses $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n \sqrt{n}}$ and $\sum_{n=0}^{\infty} \frac{1}{n \sqrt{n}}$. Both converge absolutely because the sum of the absolute values are a convergent p -series with $p=3 / 2>1$.
Finally we have the x's are in the interval $[-2,4]$
2. (a). Find the Taylor series generated by $f(x)=x^{3}-2 x+4$ at 2 (2 pts)

Ans: This is the homework. We can find that $f^{\prime}(x)=3 x^{2}-2, f^{\prime \prime}(x)=6 x$ and $f^{\prime \prime \prime}(x)=6$. The higher orders are all zero. Hence the series is $8+\frac{10}{1!}(x-2)+\frac{12}{2!}(x-2)^{2}+\frac{6}{3!}(x-2)^{3}=8+10(x-2)+6(x-2)^{2}+(x-2)^{3}$ (b). Find the Maclaurin series expansion of $f(x)=\frac{1}{x^{2}+16}$ (4 pts)

Hint: Use the expansion for $\frac{1}{x+1}$. Here you should factor 16 out and replace x with a suitable expression.
Ans: Since $\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$, we have
$\frac{1}{x^{2}+16}=\frac{1}{16} \frac{1}{x^{2} / 16+1}=\frac{1}{16} \sum_{n=0}^{\infty}(-1)^{n}\left(x^{2} / 16\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} / 16^{n+1}$. We are done.
Question: Can you find out the radius of convergence for this series just by using the conclusion for the series of $1 /(x+1)$ instead of calculating directly?

