1. Choose **ANY ONE** of the two below.(2 points) • Which one is zero? (Please Circle.) A. $\lim_{n \to \infty} \frac{n}{(\ln n)^4}$ B. $\lim_{n \to \infty} \frac{100n^3}{e^{n/2}}$ C. $\lim_{n \to \infty} \frac{n!}{2^n}$ D. $\lim_{n \to \infty} \frac{n^n}{n!}$ Ans: B. As for the speeds of going to infinity: $(\ln n)^p \ll (n)^q \ll a^n (a > 1) \ll n! \ll n^n$ • When does $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge? (Circle one.) A. $p \ge 0$ B. p < 0 C. $p \ge 1$ D. p > 1Ans: D. Integral Test. 2. 1). Find the limit of ANY ONE of the two from Homework 5. (2 pts) $a_n = (\frac{1}{n})^{1/(\ln n)} \qquad a_n = \sqrt[n]{n^2}$ Ans: You can choose any one to do. $(\frac{1}{n})^{1/(\ln n)} = e^{\ln(\frac{1}{n})^{1/(\ln n)}} = e^{\frac{1}{\ln n}(-\ln n)} = e^{-1}$ $a_n = (\frac{1}{n})^{1/(\ln n)}$ $\lim_{n \to \infty} \sqrt[n]{n^2} = 1, \text{ because } \lim_{n \to \infty} \sqrt[n]{n} = 1.$ 2). Find the **sum** of the Geometric Series from Homework 5: $\sum_{n=0}^{\infty} \left(\frac{2^{n+1}}{5^n}\right) (3 \text{ pts})(\text{Pay attention to the sub-index})$ Ans:Pay attention to the subindex. It's from 0, so the first term is 2. The ratio is obviously 2/5. The answer is 2/(1 - 2/5) = 10/3Use the Integral Test to decide when the series from Homework 5 converges: $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \quad (3 \text{ pts})$ Ans: No matter what p is, the terms decrease **eventually**, and the terms are all positive. You can use the integral test. Use another variable to do the integral please! $\int_2^\infty \frac{1}{x(\ln x)^p} \mathrm{d}x = \lim_{b \to \infty} \int_2^b \frac{1}{x(\ln x)^p} \mathrm{d}x$ When p = 1, it's $\lim_{b\to\infty} \ln(\ln x)$ | $_{\ln 2}^{\ln b}$, so it diverges. When $p \neq 1$, letting $u = \ln x$, it's $\lim_{b\to\infty} \int_2^b \frac{1}{x(\ln x)^p} dx = \lim_{b\to\infty} \int_{\ln 2}^{\ln b} u^{-p} du = \lim_{b\to\infty} \frac{1}{1-p} u^{1-p} |_{\ln 2}^{\ln b}$ If we want it to converge, the term $(\ln b)^{1-p}$ must be cancelled. Hence, 1 - p < 0, namely p > 1. We conclude that the series converges if and only if p > 1

(Bonus) Choose **ANY ONE** of the three below. (3pts)

• Does $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n \ln n}}$ converge or not? (2 pts)

Ans: Diverges. I have said that for the speed of going to infinity, the natural log is much slower than the power of n. We could expect **eventually** $\sqrt{n} \ln n$ is smaller than $\sqrt{n}n^{1/4} = n^{3/4}$, or equivalently $\sqrt{n} \ln n < n^{3/4}$ eventually. The latter is a p-series with p = 3/4, which diverges, so the former diverges.

You can justify this rigorously by using the limit comparison test by using the limit $\lim_{n\to\infty} \frac{\sqrt{n}\ln n}{n^{3/4}}$

How about
$$\sum_{n=2}^{\infty} \frac{1}{n^{p \ln n}} \ (0$$

Similar argument goes to this. When p < 1, we have (p+1)/2 between p and 1. $n^p \ln n < n^{(p+1)/2}$ eventually. Use the limit comparison test to justify this rigorously by $\lim_{n \to \infty} \frac{1/(n^{(p+1)/2})}{1/(n^p \ln n)} = 0$. $\sum \frac{1}{n^{(p+1)/2}}$ diverges. It diverges. When p=1, use the integral test.

• Does $\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^3}$ converge or not? (2 pts)

Ans: We know the natural log is slower than the power as go to infinity. So $(\ln n)^2/n \to 0$. However, $\sum \frac{1}{n^2}$ converges. Hence, the original series converges.

How about $\sum_{n=1}^{\infty} \frac{(\ln n)^q}{n^p}$ (p > 1, q > 1)? (1 pt) Ans:Similar argument goes to this. $(\ln n)^q / n^{(p-1)/2} \to 0$ and $\sum \frac{1}{n^{(p+1)/2}}$ converges. Hence $\sum \frac{(\ln n)^q}{n^p} = \sum \frac{(\ln n)^q}{n^{p+1}/2n^{(p-1)/2}}$ converges.

• Does $\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^2} + \frac{1}{4^3} + \ldots + \frac{1}{(2k-1)^2} + \frac{1}{(2k)^3} + \ldots$ converge? (1 pt) Ans: Converges.It's smaller than p-series when p=2. $\lim_{n\to\infty} \frac{\sin n}{n} \quad (1 \text{ pt})$ Ans: Sandwich theorem says it's 0 because $-1/n \leq a_n \leq 1/n$ $\lim_{n\to\infty} \frac{\sin(1/n)}{1/n} \quad (1 \text{ pt})$ Ans: 1. Using the limit $\lim_{x\to 0} \frac{\sin x}{x} = 1$ or using L'H here.