Math 222 Keys to Quiz4

By Lei September 30, 2010

1. Choose ANY ONE of the two below.(3 points)

- If $\int_{1}^{+\infty} \frac{1}{x^{2}} \mathrm{~d} x$ means $\lim _{b \rightarrow+\infty} \int_{1}^{b} \frac{1}{x^{2}} \mathrm{~d} x$, what does $\int_{0}^{+\infty} \frac{1}{x^{2}} \mathrm{~d} x$ mean? Does it converge?

Why?
Ans:
Since $\frac{1}{x^{2}}$ goes to infinity as x goes to 0 , we actually have:
$\int_{0}^{+\infty} \frac{1}{x^{2}} \mathrm{~d} x=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \frac{1}{x^{2}} \mathrm{~d} x+\lim _{b \rightarrow+\infty} \int_{1}^{b} \frac{1}{x^{2}} \mathrm{~d} x=\lim _{a \rightarrow 0^{+}}\left(-1+\frac{1}{a}\right)+\lim _{b \rightarrow+\infty}\left(-\frac{1}{b}+1\right)$
The second is 1 , but the first is positive infinity. Hence, this integral diverges.

- Find the error below and give out the correct answer:
$\int_{-1}^{1} \frac{1}{x^{4 / 3}} \mathrm{~d} x=\left.\left(-3 x^{-1 / 3}\right)\right|_{-1} ^{1}=-3+3(-1)^{-1 / 3}=-6$.
Ans:
The function goes to infinity when x goes to 0 , so this is actually an improper integral and you can't write it as a definite integral as in this problem.
The correct answer is:
$\int_{-1}^{1} \frac{1}{x^{4 / 3}} \mathrm{~d} x=\int_{-1}^{0} \frac{1}{x^{4 / 3}} \mathrm{~d} x+\int_{0}^{1} \frac{1}{x^{4 / 3}} \mathrm{~d} x=\lim _{a \rightarrow 0^{-}} \int_{-1}^{a} \frac{1}{x^{4 / 3}} \mathrm{~d} x+\lim _{b \rightarrow 0^{+}} \int_{b}^{1} \frac{1}{x^{4 / 3}} \mathrm{~d} x=$ $\lim _{a \rightarrow 0^{-}}\left(-3 a^{-1 / 3}+3(-1)^{-1 / 3}\right)+\lim _{b \rightarrow 0^{+}}\left(-3+3 b^{-1 / 3}\right)=+\infty-3-3+(+\infty)=+\infty$

2. Calculation. (7 points)
(a). $\int_{0}^{\infty} y e^{-y} \mathrm{~d} y$ (3 pts)

Ans:
$y e^{-y}$ is continuous on $[0,+\infty)$, so this improper integral is actually
$\lim _{b \rightarrow+\infty} \int_{0}^{b} y e^{-y} \mathrm{~d} y=\left.\lim _{b \rightarrow+\infty}\left(-y e^{-y}-e^{-y}\right)\right|_{0} ^{b}$, where you can use integral by parts to get this.
It's $\lim _{b \rightarrow+\infty}\left(-b e^{-b}-e^{-b}+0+1\right)=1$. Many students have difficulty getting $\lim _{b \rightarrow+\infty}\left(b e^{-b}\right)$. Please refer to Math 221.
(b) i). Given $2,7,12,17,22, \ldots$ where each number except the first one minus its previous one is a constant, find the expression for the n-th term a_{n}. (2 pts)
Ans:
Many students can't get this correctly. A pity.
$a_{1}=2$
$a_{2}=2+5$
$a_{3}=a_{2}+5=2+5 * 2$
$a_{4}=a_{3}+5=2+5 * 2+5=2+5 * 3$
$a_{n}=a_{n-1}+5=2+(n-2) * 5+5=2+(n-1) * 5=5 n-3$.
ii). Find the limit $\lim _{n \rightarrow \infty} \frac{a_{n}}{\sqrt{n^{2}+1}}(2 \mathrm{pts})$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{\sqrt{n^{2}+1}}=\lim _{n \rightarrow \infty} \frac{5 n-3}{\sqrt{n^{2}+1}}=\lim _{n \rightarrow \infty} \frac{5-3 / n}{\sqrt{1+1 / n^{2}}}=5
$$

(Bonus) 2pts.
If $a_{1}=1$ and $a_{n+1}=a_{n} /(n+1)$, find $\lim _{n \rightarrow \infty} 2^{n} a_{n}$
Ans:
$a_{2}=a_{1} / 2=1 / 2$
$a_{3}=a_{2} / 3=1 /(2 * 3)$
$a_{4}=a_{3} / 4=1 /(2 * 3 * 4)$
$a_{n}=a_{n-1} / n=\frac{1 /(2 * 3 * \ldots *(n-1))}{n}=1 /(2 * 3 * \ldots * n)=1 / n$!
$\lim _{n \rightarrow \infty} 2^{n} a_{n}=\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0$
If we denote $b_{n}=2^{n} / n$!, we can see that b_{n} is positive and after $n \geq 3$, it decreases.
Hence it must have a limit. Suppose it is b. We have $b_{n}=b_{n-1} * \frac{2}{n}$. As $n \rightarrow \infty$, it is $b=b * 0$, so the limit is 0 .
Another way is to see that $b_{n} \leq(2 / 3)^{n-3} b_{3}$ when $n \geq 3$.

