Keys to Quiz3

By Lei September 23, 2010

 not.) (4 pts)
One way is $y^{4}+2 y^{2}+y-81=\left(y^{2}+9\right)\left(y^{2}-9\right)+y(2 y+1)$, and the other way is long division.
$y^{4}+2 y^{2}+y-81=y\left(y^{3}+9 y\right)-7 y^{2}+y-81$, so $\frac{y^{4}+2 y^{2}+y-81}{y\left(y^{2}+9\right)}=y+\frac{-7 y^{2}+y-81}{y^{3}+9 y}$ (Attention:
Not $y-\frac{7 y^{2}+y-81}{y^{3}+9 y}$!).
We finally have $\frac{y^{4}+2 y^{2}+y-81}{y\left(y^{2}+9\right)}=y-\frac{9}{y}+\frac{2 y+1}{y^{2}+9}$
Ans: $\frac{1}{2} y^{2}-9 \ln |y|+\ln \left(y^{2}+9\right)+\frac{1}{3} \arctan (y / 3)+C$
Note: Somebody doesn't know what to do with $\frac{2 y+1}{y^{2}+9}$ and please get it.
b). Find the area of the region bounded by $y=\frac{x^{2}}{\sqrt{1+x^{2}}}, x=1$ and x -axis. (6 pts)

Sol:
Area $=\int_{0}^{1} \frac{x^{2}}{\sqrt{x^{2}+1}} \mathrm{~d} x$
Then use trig substitution $x=\tan \theta$, and you'll get $\int_{0}^{\pi / 4} \frac{\tan ^{2} \theta}{\sec \theta} \sec ^{2} \theta \mathrm{~d} \theta$
Note: Many students forgot $\sec ^{2} \theta d \theta$ after the substitution, even though they knew $d x=\sec ^{2} \theta d \theta$.
Then refer to your notes of the lectures on how to evaluate this integral.
Ans: $\frac{1}{2}(\sqrt{2}-\ln (\sqrt{2}+1))$

