Keys to Quiz3

By Lei September 23, 2010

a). $\int \frac{y^4 + 2y^2 + y - 81}{y(y^2 + 9)} dy$ (Hint: Remember to check whether the fraction is improper or not.)(4 pts) One way is $y^4 + 2y^2 + y - 81 = (y^2 + 9)(y^2 - 9) + y(2y + 1)$, and the other way is long division. $y^4 + 2y^2 + y - 81 = y(y^3 + 9y) - 7y^2 + y - 81$, so $\frac{y^4 + 2y^2 + y - 81}{y(y^2 + 9)} = y + \frac{-7y^2 + y - 81}{y^3 + 9y}$ (Attention: Not $y - \frac{7y^2 + y - 81}{y^3 + 9y}$!). We finally have $\frac{y^4 + 2y^2 + y - 81}{y(y^2 + 9)} = y - \frac{9}{y} + \frac{2y + 1}{y^2 + 9}$ Ans: $\frac{1}{2}y^2 - 9 \ln |y| + \ln(y^2 + 9) + \frac{1}{3} \arctan(y/3) + C$ Note: Somebody doesn't know what to do with $\frac{2y + 1}{y^2 + 9}$ and please get it. b). Find the area of the region bounded by $y = \frac{x^2}{y^2}$, x = 1 and x-axis. (6 pts)

b). Find the area of the region bounded by $y = \frac{x^2}{\sqrt{1+x^2}}$, x = 1 and x-axis. (6 pts) Sol: Area = $\int_{-\infty}^{1} \frac{x^2}{\sqrt{1+x^2}} dx$

 $Area = \int_0^1 \frac{x^2}{\sqrt{x^2 + 1}} \mathrm{d}x$

Then use trig substitution $x = \tan \theta$, and you'll get $\int_0^{\pi/4} \frac{\tan^2 \theta}{\sec \theta} \sec^2 \theta d\theta$ Note: Many students forgot $\sec^2 \theta d\theta$ after the substitution, even though they knew $dx = \sec^2 \theta d\theta$.

Then refer to your notes of the lectures on how to evaluate this integral. Ans: $\frac{1}{2}(\sqrt{2} - \ln(\sqrt{2} + 1))$