Keys to Quiz12

By Lei December 9, 2010

1. $A(1,2,3)$. Two planes $P 1: x+y=1$ and $P 2: 2 x+y-2 z=2$. Find the angle between planes (2^{\prime}), the parametrizations of the line where the planes intersect (2^{\prime}) and the distance between A and $P 2\left(1^{\prime}\right)$.
Ans: Nomal vector of $P 1$ is $n_{1}=<1,1,0>$ and normal vector of $P 2$ is $n_{2}=<2,1,-2>$. The angle is thus $\theta=\cos ^{-1}\left(\left|\frac{n_{1} \cdot n_{2}}{\left|n_{1}\right|\left|n_{2}\right|}\right|\right)=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\pi / 4$.
The line should be parallel to $n_{1} \times n_{2}=<-2,2,-1>$. We need to find a point on the line. Any point satisfying $x+y=1$ and $2 x+y-2 z=2$ should work. I choose $P(1,0,0)$. The line is $x=1-2 t, y=2 t, z=-t$
Distance $d=\left|\frac{\overrightarrow{A S} \cdot n_{2}}{\left|n n_{2}\right|}\right| . S$ is a point on $P 2$. If we choose $S(1,0,0)$. We have $d=\left|\frac{\langle 0,-2,-3>\cdot<2,1,-2\rangle}{3}\right|=4 / 3$
2. (a). $\mathbf{r}(t)=\cos 2 t \mathbf{i}+3 \sin 2 t \mathbf{j}+4 \mathbf{k}$. Find the velocity, the speed and acceleration at $t=\pi\left(3^{\prime}\right)$
(b). $\frac{d \mathbf{r}(t)}{d t}=\sec t \tan t \mathbf{i}+\tan t \mathbf{j}+2 \sin t \cos t \mathbf{k} . \mathbf{r}(0)=\overrightarrow{0}$. Find $\mathbf{r}(\pi / 3)\left(2^{\prime}\right)$

Ans: (a). $v(t)=d r(t) / d t=-2 \sin 2 t i+6 \cos 2 t j$ and
$a(t)=d v(t) / d t=-4 \cos 2 t i-12 \sin 2 t j$. At $t=\pi$, we have $v(\pi)=6 j$ and speed is
$|6 j|=6 . a(\pi)=-4 i$
(b). $r(\pi / 3)=r(0)+\int_{0}^{\pi / 3} \sec t \tan t \mathbf{i}+\tan t \mathbf{j}+2 \sin t \cos t \mathbf{k} d t=i+\ln 2 j+3 k / 4$. Here $\int \sec t \tan t d t=\sec t+C, \int \tan t d t=\ln |\sec t|+C$ and $2 \sin t \cos t=\sin 2 t$
(Bonus) A particle is moving. If $\mathbf{v} \cdot d \mathbf{v} / d t=1$ and the speed at $t=0$ is 0 , find the speed at $t=2\left(2^{\prime}\right)$
Furthermore, let it be on $y^{2}=2 x$. If at $t=2$, it's at $(2,2)$ and moving from left to right, find the velocity $\left(2^{\prime}\right)$.
Ans: Since $v \cdot d v / d t=\frac{1}{2} \frac{d|v|^{2}}{d t}=1$, we have $|v|^{2}=2 t+c$. We can determine that $c=0$. Then $v(2)=2$.
At $(2,2)$, one vector parallel to the tangent line is $<1, f^{\prime}(x)>=<1,1 / \sqrt{2 x}>\left.\right|_{2}=<1,1 / 2>$. The velocity is thus $2 *<1,1 / 2>* 2 / \sqrt{5}=<4,2>/ \sqrt{5}$

