Keys to Quiz10

By Lei November 18, 2010

1. Find the center and the radius of the sphere $x^{2}+y^{2}+z^{2}-6 y+8 z=0\left(2^{\prime}\right)$ and the midpoint between the point where the sphere meets the x -axis and the center $\left(1^{\prime}\right)$. Ans: Completing the square, we'll have the equation of the sphere as $x^{2}+(y-3)^{2}+(z+4)^{2}=25$. The center should be $(0,3,-4)$ and the radius is $\sqrt{R H S}=\sqrt{25}=5$ if it is a sphere and the Left Hand Side is the sum of several squares. Generally, the midpoint between $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$. The point where the sphere meets the axis should satisfy both equations. The x -axis is $y=0, z=0$ and hence, the point is like ($a, 0,0$). It's on the sphere, so $a^{2}+0+0-0+0=0$ and thus $a=0$. We have only one solution, which means the x -axis is tangent to the sphere. The midpoint is $(0,1.5,-2)$.
Qs: How about if we have two solutions or no solutions? Is it possible to have more than two solutions?
2. $\overrightarrow{A B}=<1,2,4>, O$ is the origin and $A(0,0,1)$.

For $\overrightarrow{A B}$, write it as the magnitude times the direction. (1^{\prime})
Ans: The magnitude is $\sqrt{1^{2}+2^{2}+4^{2}}=\sqrt{21}$ and the answer is $\sqrt{21}<\frac{1}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{4}{\sqrt{21}}>$ or equivalently $\sqrt{21}\left(\frac{1}{\sqrt{21}} i+\frac{2}{\sqrt{21}} j+\frac{4}{\sqrt{21}} k\right)$

Find the angle between $\overrightarrow{O B}$ and $\overrightarrow{A B}\left(2^{\prime}\right)$ and the projection of $\overrightarrow{O B}$ onto $\overrightarrow{O A}\left(2^{\prime}\right)$ Ans: Since the components of the vector equals the coordinate of the termial point minus the initial point, we can figure out that $B(1,2,5) . \overrightarrow{O B}=<1,2,5\rangle$. The angle should be $\cos ^{-1}\left(\frac{<1,2,4><1,2,5>}{\sqrt{21} \sqrt{30}}\right)=\cos ^{-1}\left(\frac{25}{3 \sqrt{70}}\right)$. The projection should be $\frac{\overrightarrow{O B} \cdot \overrightarrow{O A}}{|O A|^{2}} \overrightarrow{O A}=<0,0,5>=5 k$ By obervation, you can also get this, because it's just the z-component of the $\overrightarrow{O B}$

Write $\overrightarrow{A B}-\frac{1}{2} \overrightarrow{O A}$ as a linear combination of $\overrightarrow{O B}$ and $\overrightarrow{O A}\left(2^{\prime}\right)$
Ans:The first method is to use $\overrightarrow{A B}=\overrightarrow{Q B}-\overrightarrow{Q A}$ for any point Q. Here, we can have the result is $\overrightarrow{O B}-\frac{3}{2} \overrightarrow{O A}$ if we let $Q=O$. Of course you can also calculate the coordinates of the vector and then get the equations and then solve.
(Bonus) Find a point P between O and B such that $A P$ is perpendicular to $O B\left(2^{\prime}\right)$ Ans: I just want to test the concept of projection here. You can figure out that $\overrightarrow{O P}$ should be the projection of $\overrightarrow{O A}$ onto $\overrightarrow{O B}$. Then you can do. Answer is $<1 / 6,2 / 6,5 / 6>$

