Keys to Quiz1

September 10, 2010

Some formulas:

 $\int \frac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1}(\frac{u}{a}) + C \qquad \int \frac{1}{a^2 + u^2} du = \frac{1}{a} \tan^{-1}(\frac{u}{a}) + C$ $\int \frac{1}{u\sqrt{u^2 - a^2}} du = \frac{1}{a} \sec^{-1} |\frac{u}{a}| + C$

- Complete ONE of the formulas below.(3 points)
 ∫ sec u tan udu
 ∫ tan udu
 Note:Please refer to the book. I'd like to remind you to distinguish the difference between the derivative of tan u and the its integral.
- 2. Calculations. Find the integrals below. (7 points)
 - (a) $\int_{\pi/4}^{\pi/3} \sec^2 y e^{\tan y} dy$ (4 pts)

Ans:We know the result of a definite integral is a number. Let's find the number. By substitution $u = \tan y$, we can get the antiderivative is $e^{\tan y} + C$. So we have the answer is $e^{\tan y}|_{\pi/4}^{\pi/3} = e^{\sqrt{3}} - e$.

Writing in another way is like this:

Let $u = \tan y$, we have $du = \sec^2 y dy$. When $y = \pi/4$, u=1 and when $y = \pi/3$, $u = \sqrt{3}$.

So the integral becomes like this:

 $\int_{1}^{\sqrt{3}} e^{u} du = e^{\sqrt{3}} - e.$ (pay attention to the upper limit and lower limit.)

(b) $\int \frac{x^4}{1+x^2} dx$ (3 pts)

Ans: Notice the degree of the numerator isn't smaller than that of the denominator, so we should reduce this improper fraction.

By long division, $\frac{x^4}{x^2+1} = x^2 - 1 + \frac{1}{x^2+1}$, so we have $\int \frac{x^4}{1+x^2} dx = \int (x^2 - 1 + \frac{1}{x^2+1}) dx = \frac{x^3}{3} - x + \arctan x + C$

Extra problem

Instructions: This is the extra problem, whose points can add to the total score. However, the total score won't be more than 10 points.

Find a way to calculate $I_k = \int \tan^{2k+1} x dx$, where k is a nonnegative integer. Hint: Find the relationship between I_k and I_{k-1} when $k \ge 1$, and you may want to use the relationship between $\sec x$ and $\tan x$ (5 pts)

Ans:

 $I_{k} = \int \tan^{2k+1} x dx = \int \tan^{2k-1} x * \tan^{2} x dx = \int \tan^{2k-1} x * (\sec^{2} x - 1) dx = \int \tan^{2k-1} x \sec^{2} x dx - \int \tan^{2k-1} x dx = \frac{1}{2k} \tan^{2k} x - I_{k-1}$

Attention: Since I_k and I_{k-1} both are the sets of some functions, we can omit the constant term here.

Thus, if we want to know I_k , we should know I_{k-1} . So we need to calculate I_{n_0} for some n_0 , and we can see if $n_0 = 0$, we can do, which is $I_0 = \int \tan x \, dx = \ln |\sec x| + C$.