Math 222 Keys and Hints for HW8

By Lei October 28, 2010

Section 11.9

$1,6,9,13,14,18,21,22,23,28,35,36$

1. Ans: Applying $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ here, we can get $e^{-5 x}=\sum_{n=0}^{\infty} \frac{(-5 x)^{n}}{n!}$
2. Ans: $\cos \left(x^{3 / 2} / \sqrt{2}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{3 / 2} / \sqrt{2}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n}}{2^{n}(2 n)!}$
3. Ans: $\frac{x^{2}}{2}-1+\cos x=\frac{x^{2}}{2}-1+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$
4. Ans: $\left.\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)=\frac{1}{2}\left(1+\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 x)^{2 n}}{(2 n)!}\right)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 x)^{2 n}}{2(2 n)!}\right)$
5. Ans:Similar to above $\left.\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x))=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2 x)^{2 n}}{2(2 n)!}\right)$
6. Ans: $\frac{2}{(1-x)^{3}}$. You can calculate the derivatives directly. Here I'd like to do like this:
$\left(\frac{1}{1-x}\right)^{\prime \prime}=\left(\sum_{n=0}^{\infty} x^{n}\right)^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) x^{n}$
7. Ans:By the Taylor theorem, we use P_{2} here, we have $\sin x=x+R_{2}=x+\frac{-\cos (c)}{3!} x^{3}$. \mid error $\left\lvert\,<\frac{10^{-9}}{6}\right.$. If $x<\sin x$, we have $R_{2}>0$, which means $x<0$.
8. Ans:We have the formula $\sqrt{1+x}=1+x / 2+\frac{f^{(2)}(c)}{2!} x^{2}$. We can calculate that $f^{\prime \prime}(x)=-\frac{1}{4}(1+x)^{-3 / 2}$, so we have \mid error $\left|=\left|\frac{1}{8(1+c)^{3 / 2}} x^{2}\right|<\frac{1}{8(1-0.01)^{3 / 2}} 0.01^{2}\right.$
9. Ans:The error term is $e^{c} x^{3} / 3$!, so we have \mid error $\mid<e^{0.1}\left(0.1^{3}\right) / 6$. If you would like to do $e<3$, it's OK, but I don't think this is good enough.
10. Ans:We have the formula $\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$ for $|x| \leq 1$. You can get this for $|x|<1$ by integrating $\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$ and then extend to $x= \pm 1$ by the continuity. Anyway, we have $\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$, which is a convergent alternating series. If we keep N terms, namely, we use $\sum_{n=0}^{N-1} \frac{(-1)^{n}}{2 n+1}$, then we have \mid error $\left\lvert\,<\frac{1}{2 N+1}\right.$ by the conclusion of alternating series. If we want to keep 2 good decimal places, which means in $0 . a_{1} a_{2} \ldots, a_{1}$ and a_{2} should be good. Here I'm not quite clear what good should mean. I understand it by using the approximation $0.1194 \approx 0.199$ and $0.1195 \approx 0.120$, namely more than or equal to 5 contributes 1 to the previous digit and no contribution otherwise. Here the third digit is not good. $\frac{1}{2 N+1}<5 * 10^{-4}$. I think you can use $<10^{-3}$ here.
11. Ans:Not hard but needs a little calculation. I'd like to omit it here. I just give the forth term as an examople. We should decide the coefficient of x^{5} (Attention: The term begins with x, and the coefficient of x^{4} is 0 , so the fourth term is x^{5}).
$1 * \frac{1}{5!}+\frac{1}{2!} *(-1) \frac{1}{3!}+\frac{1}{4!} * 1=-\frac{1}{30}$. You can also take the imaginary part of $e^{(1+i) x}$. 36. Ans:Similar to the above. Omitted.

Section 9.1

$1,2,6-8,9-14,17,19-22,23,24$
1 and 2 can be done by differentiation. I'd like give 2 as an example: $y=-\frac{1}{x+c}$, so $y^{\prime}=-(-1) \frac{1}{(x+c)^{2}}(x+c)^{\prime}=y^{2}$.
6 to 8 can be done directly. I'd like to take 8 as an example. Check the initial value first: $y(e)=e / \ln e=e$, which is correct. Then the equation: $y^{\prime}=\frac{1}{\ln x}-\frac{1}{(\ln x)^{2}}$ and you can see $x^{2} y^{\prime}=x y-y^{2}$ is right.
9-14 and 17 are all separable equations.
9. Ans: $\sqrt{y} d y=\frac{1}{2 \sqrt{x}} d x$. Then, integrate, and we have $\frac{2}{3} y^{3 / 2}=\sqrt{x}+C$
10. Ans: $2 \sqrt{y}=\frac{1}{3} x^{3}+C$
11. Ans: $e^{y} d y=e^{x} d x$, so we have $e^{y}=e^{x}+C$
12. Ans: $e^{y} d y=3 x^{2} d x$. $\int e^{y} d y=\int 3 x^{2} d x$, which is $e^{y}=x^{3}+C$
13. Ans:Firstly, we should separate the variables. We have $\frac{d y}{\sqrt{y} \cos ^{2} \sqrt{y}}=d x$. Then integrate, and we have $\int \frac{1}{\sqrt{y} \cos ^{2} \sqrt{y}} d y=\int d x$. On the left hand side, we do the substitution $u=\sqrt{y}$. We can have $2 \arctan (\sqrt{y})=x+C$
14. Ans: $\frac{2}{3} x^{3 / 2}=\sqrt{2 x}+C$
17. Ans: $\arcsin (y)=x^{2}+C$, which is $y=\sin \left(x^{2}+C\right)$
19. d 20. с 21.a 22.b

23 and 24 are omitted.

