# Math 222 Keys and Hints for HW7 

By Lei October 21, 2010

## Section 11.7

37, 38
37. Ans: Use the ratio test. We can see that the ratio is $\frac{x^{2}+1}{3}$. We first let the ratio be less than 1 to find the radius of convergence. $x^{2}<2$ and thus $-\sqrt{2}<x<\sqrt{2}$. However, if we set $x^{2}=2$, we can see that for both x's, the series diverges. Hence the interval is $(-\sqrt{2}, \sqrt{2})$. On this interval, the original series is a geometric series. The sum is $\frac{1}{1-\left(x^{2}+1\right) / 3}=\frac{3}{2-x^{2}}$
38. Ans: the method is the same as 37 . Interval $(-\sqrt{3}, \sqrt{3})$. The sum is $\frac{2}{3-x^{2}}$.

## Section 11.8

7, 9, 10, 20, 21, 25, 26, 28
7. Ans: Find the different orders of derivatives of $f(x)=\sqrt{x}$, we have $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}, f^{\prime \prime}(x)=\frac{-1}{4} x^{-3 / 2}, f^{(3)}(x)=\frac{3}{8} x^{-5 / 2}$. We have the polynomials of order $0,1,2,3$ at 4 are $2,2+\frac{1}{4}(x-4), 2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}, 2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}$
9. Ans:You can get the derivates to calculate. Here I just want to apply the conclusion for $e^{x}$. Replace x with $-x$, we have $\sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!}$
10. Ans: The method is similar with 9 . We have the conclusion as $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n} n!}$
20. Ans: $x^{2}+2 x+1$
21. Ans: $f^{\prime}(x)=3 x^{2}-2, f^{\prime \prime}(x)=6 x$ and $f^{\prime \prime \prime}(x)=6$. The higher order derivatives are all 0 . Hence the answer is $8+10(x-2)+6(x-2)^{2}+(x-2)^{3}$
25. Ans:You can calculate the derivatives to calculate this. Here, I want to do something different. $f(x)=\frac{1}{x^{2}}=-\left(\frac{1}{1+(x-1)}\right)^{\prime}=-\left(\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}\right)^{\prime}=-\left(\sum_{n=0}^{\infty}(-1)^{n} n(x-1)^{n-1}\right)=$ $\sum_{n=0}^{\infty}(-1)^{n+1} n(x-1)^{n-1}=\sum_{n=1}^{\infty}(-1)^{n+1} n(x-1)^{n-1}=\sum_{n=0}^{\infty}(-1)^{n+2}(n+1)(x-1)^{n}=$ $\sum_{n=0}^{\infty}(-1)^{n}(n+1)(x-1)^{n}$
26. Ans:I also don't want to calculate the derivatives. $\frac{x}{1-x}=x \sum_{n=0}^{\infty} x^{n}=\sum_{n=1}^{\infty} x^{n}$
28. Ans:This is easy. We have two ways. The first is always to use the formula. Here I want to do something different. $2 * 2^{x-1}=2 * e^{(x-1) \ln 2}=2 * \sum_{n=0}^{\infty} \frac{(\ln 2)^{n}(x-1)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{2(\ln 2)^{n}(x-1)^{n}}{n!}$

