Math 222 Keys and Hints for HW6

By Lei October 14, 2010

Section 11.5

2,3,6,11,12,17,20,21,39-42
2. Ans: $\sum_{n=1}^{\infty} n^{2} e^{-n}$ converges, because the ratio $a_{n+1} / a_{n}=\frac{(n+1)^{2} e^{-(n+1)}}{n^{2} e^{-n}}=\frac{(n+1)^{2} e^{-1}}{n^{2}} \rightarrow e^{-1}<1$.

You can also use the limit test, because $e^{p n}(p>0)$ is much quicker than the power. $n^{2} e^{-n} / e^{-n / 2} \rightarrow 0$ and $\sum e^{-n / 2}$ converges.
3. Ans: Diverges. The ratio is $a_{n+1} / a_{n}=(n+1) e^{-1} \rightarrow \infty>1$. Also you can check that the n-th term goes to infinity.
6. Ans:Diverges. The n-th term a_{n} goes to e^{-2}, which is not zero. The root test can't apply here, because it goes to 1 .
11. Ans:Converges. Limit Comparison test. $\frac{\ln n / n^{3}}{1 / n^{2}} \rightarrow 0$. The ratio test and root test don't work here, because the ration and the n-th root both go to 1 .
12. Ans:Converges. The root test. $\sqrt[n]{\frac{\left(\ln n n^{n}\right.}{n^{n}}}=\frac{\ln n}{n} \rightarrow 0$
17. Ans:Converges. The ratio test. $a_{n+1} / a_{n}=\frac{(n+2)(n+3)}{(n+1)(n+2)(n+1)} \rightarrow 0$. You can also justify by using the limit test by choosing appropriate series that can be obtained by using the
different speeds of going to infinity I once said. For example, you can use $\sum \frac{1}{n^{2}}$ to compare.
20. Ans:Converges. Actually $a_{n}=\frac{n(n+1) 2^{n}}{3^{n}}$ and the n-th root goes to $2 / 3$.
21. Ans:Converges. For the term containing factorial, you can try ratio test. Here
$a_{n+1} / a_{n}=\frac{n+1}{(2 n+2)(2 n+3)} \rightarrow 0$
39. Ans:Diverges. The term contains power, and you can try n-th root, which is $n!/ n^{2} \rightarrow \infty$.
40. Ans:Converges. The n-th root is $n!/ n^{n} \rightarrow 0$
41. Ans:Converges. The n-th root is $n / 2^{n} \rightarrow 0$
42. Ans:Diverges. The n-th root is $n / 2^{2} \rightarrow \infty$

Section 11.6

$3,5,6,7,8,13,16,18,23,26,35,40,45,46,51$
3. Ans:Diverges. The n-th term does NOT go to zero.
5. Ans:Converges.The Alternating Series Test.
6. Ans:Converges. The Alternating Series Test.
7. Ans:Diverges. $a_{n}=(-1)^{n+1} \frac{\ln n}{2 \ln n}=(-1)^{n+1} \frac{1}{2}$ which doesn't go to zero.
8. Ans:Converges. Let $f(x)=\ln (1+1 / x)$, and then $f^{\prime}(x)=\frac{x}{x+1} \frac{-1}{x^{2}}<0$. We conclude that the absolute value decreases. The limit is obviously 0. Using the Alternating Series Test.
13. Ans:Converges, but doesn't converge absolutely. Reason omitted here.
16. Ans:Diverges. Look at the n-th term.
18. Ans:Converges absolutely. The absolute value of the n-th term is less than or equal to $1 / n^{2}$.
23. Ans:Converges absolutely. Look at the absolute value and use the root test.
26. Ans:Converges but doesn't converge absolutely. This is very easy, and find the reason yourself.
35. Ans:Converges absolutely. Easy, applying the n-th root to the absolute value.
40. Ans:Diverges. $a_{n}=(-1)^{n} \frac{n}{\sqrt{n^{2}+n}+n}$, and it doesn't go to 0 .
45. Ans:The error $\left|s-s_{4}\right|<u_{5}=1 / 5$
46. Ans: $\left|s-s_{4}\right|<u_{5}=1 / 10^{5}=10^{-5}$
51. Ans:a. The absolute value u_{n} doesn't satisfy $u_{n} \geq u_{n+1}$ for large n .
b. This series converges absolutely and thus we can rearrage it's order and it is actually
$\sum_{n=1}^{\infty} \frac{1}{3^{n}}-\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1 / 2-1=-1 / 2$

Section 11.7

1,3,4,12,17,22,27,32

1. Ans:The ratio is x and thus it's limit is x . We require ratio <1 and hence the radius of convergence is 1 . For both $x=1$ and $x=-1$, the series diverges. So for $-1<x<1$, it converges absolutely and otherwise it diverges.
2. Ans:The ratio is $(-1)(4 x+1)$. We require $|4 x+1|<1$, which is $-1 / 2<x<0$ and hence the radius of convergence is $1 / 4$. Again for $-1 / 2$ and 0 ,it diverges.
3. Ans: $1 / 3<x<1$ absolutely; $1 / 3$, conditionally; others diverges. Radius: $1 / 3$.
4. Ans:Ratio is $3 x /(n+1) \rightarrow 0$. Radius is infinity and for every x , the convergence is absolutely.
5. Ans: The limit of the ratio is $(x+3) / 5$. Radius $5 .-8<x<2$ absolutely; others diverges.
6. Ans:The limit of the ratio is x. Radius $1 .-1<x<1$ absolutely and others diverges.
7. Ans:Radius 1. For $-1 \leq x \leq 1$ converges absolutely. Others diverges.
8. Ans:Ratio $(x-\sqrt{2})^{2} / 2$. We require $|x-\sqrt{2}|<\sqrt{2}$, hence the radius is $\sqrt{2}$. For $x=2 \sqrt{2}$, it diverges obviously and for 0 , also diverges. Hence, finally we have $0<x<2 \sqrt{2}$ for absolute convergence and others divergence.
