Math 222 Keys and Hints for HW5

By Lei October 7, 2010

Section 11.1

24. $a_{n}=\frac{n+(-1)^{n}}{n}$

Ans: Converges to 1 .
26. $a_{n}=\frac{2 n+1}{1-3 \sqrt{n}}$

Ans: Diverges to negative infinity.
36. $a_{n}=\left(-\frac{1}{2}\right)^{n}$

Ans: Converges to 0 .
52. $a_{n}=\sqrt[n]{n^{2}}$

Ans: Converges to 1 .
Hint: $\sqrt[n]{n} \rightarrow 1$ as $n \rightarrow \infty$
63. $a_{n}=\left(\frac{1}{n}\right)^{1 / \ln n}$

Ans: Converges to e^{-1}
Hint: $a_{n}=\left(\frac{1}{n}\right)^{1 / \ln n}=e^{\ln \left(\left(\frac{1}{n}\right)^{1 / \ln n}\right)}=e^{\frac{1}{\ln n} \ln (1 / n)}=e^{-1}$
74. $a_{n}=n\left(1-\cos \frac{1}{n}\right)$

Ans: 0
Hint: L'Hospital. $\frac{1-\cos \frac{1}{n}}{1 / n} \rightarrow \frac{\sin (1 / n)}{1} \rightarrow 0$

Section 11.2

For 9-14, they are all geometric serieses. The method is the same.Pay attention to whether it begins at 0 or 1 .
9. $\sum_{n=1}^{\infty} \frac{7}{4^{n}}$

Ans: $7 / 3$.
Hint: When the absolute value of the ration is less than 1 , you can use $a_{1} /(1-r)$
10. Ans: $\frac{5}{1-(-1 / 4)}=4$
11. Ans: $\frac{5}{1-1 / 2}+\frac{1}{1-1 / 3}=11.5$
14. Ans: $\frac{2}{1-2 / 5}=10 / 3$
15. $\sum_{n=1}^{\infty} \frac{4}{(4 n-3)(4 n+1)}$

Ans: 1.
Hint: $\frac{4}{(4 n-3)(4 n+1)}=\frac{1}{4 n-3}-\frac{1}{4 n+1}=\frac{1}{4 n-3}-\frac{1}{4(n+1)-3}$
18. Ans: $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}=\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right)=1$
22. Ans: $\pi / 4-\pi / 2=-\pi / 4$
24. Ans: Diverges because the ratio of the geometric series is bigger than 1.
28. Ans: Converges. It's actually $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{5^{n}}=\frac{1}{1-(-1 / 5)}=5 / 6$
29. Ans: Converges. It's also geometric. $\frac{1}{1-e^{-2}}$
37. Ans:Diverges. $\sum_{n=1}^{\infty}(\ln n-\ln (n+1))=\lim _{n \rightarrow \infty}(-\ln (n+1))$
39. Ans: Converges. Geometric and $e / \pi<1$. $\frac{1}{1-e / \pi}$
43. Ans: We require $|x-1|<2$, namely $-1<x<3$. The sum is $\frac{3}{1-\frac{x-1}{2}}=\frac{6}{3-x}$. Here if $x=1$, we define the zeroth term to be 3 .
51. Ans: 23/99

Hint: $23 / 10^{2}+23 / 10^{4}+23 / 10^{6}+\ldots$, a geometric series again.
56. Ans: $1+\frac{414}{10^{3}}+\frac{414}{10^{6}}+\ldots=1+414 * \frac{10^{-3}}{1-10^{-3}}=1+\frac{414}{999}=\frac{1413}{999}$
77. Ans:

In the first graph, we have 3 edges, and from the first graph to the second, each edge generates 4 edges, so we have $3^{*} 4$ edges in the second graph. From the second to the third, each edge generates 4 edges, so we have $3^{*} 4^{*} 4$ edges in the third. Generally, we have $3 * 4^{n-1}$ edges in the n-th graph.

The length of the edge in the first graph is 1 , and the length of one edge in the second is $1 / 3$. In the third, it's $(1 / 3)^{2}$ and so on. Generally, the length of one edge in the n-th graph is $\left(\frac{1}{3}\right)^{n-1}$.

We have $L_{n}=3 * 4^{n-1} *\left(\frac{1}{3}\right)^{n-1}=3 *\left(\frac{4}{3}\right)^{n-1} \rightarrow \infty$.
Let's see the areas. Suppose $B_{n}=A_{n+1}-A_{n}$, and we have B_{1} as the sum of the areas of the three triangles with length of $1 / 3$, so $B_{2}=3 *(1 / 3)^{2} * A_{1}$. From n to n+1, each edge genarates one small triangle. We have $3 * 4^{n-1}$ edges in the n-th graph, and the length of the edge in the $(\mathrm{n}+1)$ th graph is $\left(\frac{1}{3}\right)^{n}$. Thus we have the area increasement from the nth to the $(\mathrm{n}+1)$ th as $3 * 4^{n-1} *\left[\left(\frac{1}{3}\right)^{n}\right]^{2} * A_{1}=\frac{1}{3} *(4 / 9)^{n-1} * A_{1}$, so we have:
$A_{n}=A_{1}+B_{1}+B_{2}+B_{3}+\ldots+B_{n-1}$ and
$A_{n} \rightarrow A_{1}+\frac{1}{3} A_{1}+\frac{1}{3}(4 / 9) A_{1}+\ldots=A_{1}+\frac{A_{1}}{3} \sum_{n=1}^{\infty}\left(\frac{4}{9}\right)^{n-1}=A_{1}+\frac{A_{1}}{3} \frac{1}{1-4 / 9}=A_{1}+A_{1} * \frac{3}{5}$.
However, $A_{1}=\frac{1}{2} * 1 * 1 * \sin (\pi / 3)=\sqrt{3} / 4$. We have the limit as $2 \sqrt{3} / 5$.

Section 11.3

3. Diverges because $a_{n}=n /(n+1) \rightarrow 1$ rather than 0 .
4. Converges because it's equal to $-2 *(p-s e r i e s)$ where $p=3 / 2$.
5. Diverges. You can use integral test, but I think check the order of the n is best. The order is 1 , so it acts like $1 / n$. You can use the limit comparison test to justify this,
6. Converges. $\ln 3>1$ and it's a geometric series. $1 / \ln 3<1$.
7. Converges. Integral test. $\int_{1}^{\infty} \frac{1}{x\left(1+(\ln x)^{2}\right.} \mathrm{d} x$ converges.
8. Converges. Integral test.
9. it is $\left.\lim _{b \rightarrow \infty} \frac{1}{1-p}(\ln x)^{1-p}\right|_{2} ^{b}(p \neq 1)$ or $\left.\lim _{b \rightarrow \infty} \ln (\ln x)\right|_{2} ^{b}(\mathrm{p}=1)$ converges if and only if $p>1$.

The series converges if and only if $p>1$.

Section 11.4

2. Diverges. It acts like $1 / n$, because $\lim _{n \rightarrow \infty} \frac{n+\sqrt{n}}{n}=1$. Limit Comparison test.
3. Converges, because $\frac{n}{3 n+1}<\frac{1}{3}$

Qs:How about $\sum_{n=1}^{\text {infty }}\left(\frac{3 n}{3 n+1}\right)^{n} ?$ (Diverges)
10. Diverges. $(\ln n)^{p} / n^{q} \rightarrow 0$ for any positive numbers p and q .
11. Converges. The reason is the same as \#10.
19. Converges. The order is 2 . Use the limit Comparison Test.
20. Converges. The order is $3 / 2$. Thus you can use $\lim _{n \rightarrow \infty}\left(\frac{\sqrt{n}}{n^{2}+1}\right) /\left(\frac{1}{n^{3 / 2}}\right)$
21. Converges. You can move one minus sign out and then you can see that it will goes like $1 / 2^{n}$. Use the limit comparison test to justify this.
28. Converges. The order of the n is $2+1+2-3=2$, so you can check the limit $a_{n} /\left(1 / n^{2}\right)$
34. Converges. Limit Comparison Test.

