Math 222 Keys and Hints for HW5

By Lei October 7, 2010

Section 11.1 24. $a_n = \frac{n+(-1)^n}{n}$ Ans: Converges to 1. 26. $a_n = \frac{2n+1}{1-3\sqrt{n}}$ Ans: Diverges to negative infinity. 36. $a_n = (-\frac{1}{2})^n$ Ans: Converges to 0. 52. $a_n = \sqrt[n]{n^2}$ Ans: Converges to 1. Hint: $\sqrt[n]{n} \to 1$ as $n \to \infty$ 63. $a_n = (\frac{1}{n})^{1/\ln n}$ Ans: Converges to e^{-1} Hint: $a_n = (\frac{1}{n})^{1/\ln n} = e^{\ln((\frac{1}{n})^{1/\ln n})} = e^{\frac{1}{\ln n}\ln(1/n)} = e^{-1}$ 74. $a_n = n(1 - \cos \frac{1}{n})$ Ans: 0 Hint: L'Hospital. $\frac{1-\cos \frac{1}{n}}{1/n} \to \frac{\sin(1/n)}{1} \to 0$

Section 11.2

For 9-14, they are all geometric serieses. The method is the same.Pay attention to whether it begins at 0 or 1.

9. $\sum_{n=1}^{\infty} \frac{7}{4^n}$ Ans: 7/3.

Hint: When the absolute value of the ration is less than 1, you can use $a_1/(1-r)$ 10. Ans: $\frac{5}{1-(-1/4)} = 4$ 11. Ans: $\frac{5}{1-1/2} + \frac{1}{1-1/3} = 11.5$ 14. Ans: $\frac{2}{1-2/5} = 10/3$ 15. $\sum_{n=1}^{\infty} \frac{4}{(4n-3)(4n+1)}$ Ans: 1. Hint: $\frac{4}{(4n-3)(4n+1)} = \frac{1}{4n-3} - \frac{1}{4n+1} = \frac{1}{4n-3} - \frac{1}{4(n+1)-3}$ 18. Ans: $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} = \sum_{n=1}^{\infty} (\frac{1}{n^2} - \frac{1}{(n+1)^2}) = 1$ 22. Ans: $\pi/4 - \pi/2 = -\pi/4$ 24. Ans: Diverges because the ratio of the geometric series is bigger than 1. 28. Ans: Converges. It's actually $\sum_{n=0}^{\infty} \frac{(-1)^n}{5^n} = \frac{1}{1-(-1/5)} = 5/6$ 29. Ans: Converges. It's also geometric. $\frac{1}{1-e^{-2}}$

37. Ans:Diverges.
$$\sum_{n=1}^{\infty} (\ln n - \ln(n+1)) = \lim_{n \to \infty} (-\ln(n+1))$$

39. Ans: Converges. Geometric and $e/\pi < 1$. $\frac{1}{1-e/\pi}$

43. Ans: We require |x - 1| < 2, namely -1 < x < 3. The sum is $\frac{3}{1 - \frac{x-1}{2}} = \frac{6}{3-x}$. Here if x = 1, we define the zeroth term to be 3.

51. Ans: 23/99

Hint: $23/10^{2} + 23/10^{4} + 23/10^{6} + \dots$, a geometric series again. 56. Ans: $1 + \frac{414}{10^{3}} + \frac{414}{10^{6}} + \dots = 1 + 414 * \frac{10^{-3}}{1 - 10^{-3}} = 1 + \frac{414}{999} = \frac{1413}{999}$ 77. Ans:

In the first graph, we have 3 edges, and from the first graph to the second, each edge generates 4 edges, so we have 3*4 edges in the second graph. From the second to the third, each edge generates 4 edges, so we have $3^{*}4^{*}4$ edges in the third. Generally, we have $3 * 4^{n-1}$ edges in the n-th graph.

The length of the edge in the first graph is 1, and the length of one edge in the second is 1/3. In the third, it's $(1/3)^2$ and so on. Generally, the length of one edge in the n-th graph is $(\frac{1}{3})^{n-1}$.

We have $L_n = 3 * 4^{n-1} * (\frac{1}{3})^{n-1} = 3 * (\frac{4}{3})^{n-1} \to \infty.$

Let's see the areas. Suppose $B_n = A_{n+1} - A_n$, and we have B_1 as the sum of the areas of the three triangles with length of 1/3, so $B_2 = 3 * (1/3)^2 * A_1$. From n to n+1, each edge genarates one small triangle. We have $3 * 4^{n-1}$ edges in the n-th graph, and the length of the edge in the (n+1)th graph is $(\frac{1}{3})^n$. Thus we have the area increasement from the nth to the (n+1)th as $3 * 4^{n-1} * [(\frac{1}{3})^n]^2 * A_1 = \frac{1}{3} * (4/9)^{n-1} * A_1$, so we have:

 $A_n = A_1 + B_1 + B_2 + B_3 + \ldots + B_{n-1} \text{ and}$ $A_n \to A_1 + \frac{1}{3}A_1 + \frac{1}{3}(4/9)A_1 + \ldots = A_1 + \frac{A_1}{3}\sum_{n=1}^{\infty} (\frac{4}{9})^{n-1} = A_1 + \frac{A_1}{3}\frac{1}{1-4/9} = A_1 + A_1 * \frac{3}{5}.$ However, $A_1 = \frac{1}{2} * 1 * 1 * \sin(\pi/3) = \sqrt{3}/4$. We have the limit as $2\sqrt{3}/5$.

Section 11.3

3. Diverges because $a_n = n/(n+1) \rightarrow 1$ rather than 0.

6. Converges because it's equal to -2 * (p - series) where p = 3/2.

16. Diverges. You can use integral test, but I think check the order of the n is best. The order is 1, so it acts like 1/n. You can use the limit comparison test to justify this,

- 20. Converges. $\ln 3 > 1$ and it's a geometric series. $1/\ln 3 < 1$.
- 22. Converges. Integral test. $\int_{1}^{\infty} \frac{1}{x(1+(\ln x)^2)} dx$ converges.

25. Converges. Integral test. 39. it is $\lim_{b\to\infty} \frac{1}{1-p} (\ln x)^{1-p} |_2^b \ (p \neq 1)$ or $\lim_{b\to\infty} \ln(\ln x) |_2^b \ (p=1)$ converges if and only if p > 1. The series converges if and only if p > 1.

Section 11.4

2. Diverges. It acts like 1/n, because $\lim_{n \to \infty} \frac{n + \sqrt{n}}{n} = 1$. Limit Comparison test.

7. Converges, because $\frac{n}{3n+1} < \frac{1}{3}$

Qs:How about $\sum_{n=1}^{infty} (\frac{3n}{3n+1})^n$?(Diverges) 10. Diverges. $(\ln n)^p/n^q \to 0$ for any positive numbers p and q.

11. Converges. The reason is the same as #10.

- 19. Converges. The order is 2. Use the limit Comparison Test.

20. Converges. The order is 3/2. Thus you can use $\lim_{n\to\infty} (\frac{\sqrt{n}}{n^2+1})/(\frac{1}{n^{3/2}})$ 21. Converges. You can move one minus sign out and then you can see that it will goes like $1/2^n$. Use the limit comparison test to justify this.

28. Converges. The order of the n is 2+1+2-3=2, so you can check the limit $a_n/(1/n^2)$

34. Converges. Limit Comparison Test.